
Neurocomputing 273 (2018) 237–250

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

A dynamic state transition algorithm with application to sensor

network localization

Xiaojun Zhou

a , Peng Shi b , Cheng-Chew Lim

b , Chunhua Yang a , ∗, Weihua Gui a

a School of Information Science and Engineering, Central South University, Changsha 410083, China
b School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5005, Australia

a r t i c l e i n f o

Article history:

Received 8 April 2017

Revised 22 July 2017

Accepted 8 August 2017

Available online 31 August 2017

Communicated by Dr. Ma Lifeng Ma

Keywords:

State transition algorithm

Dynamic adjustment

Sensor network localization

Global optimization

a b s t r a c t

The sensor network localization (SNL) problem aims to reconstruct the positions of all the sensors in a

network with given distance between pairs of sensors and within the radio range between them. It is

proved that the computational complexity of the SNL problem is NP-hard, and semi-definite program-

ming or second-order cone programming relaxation methods can only solve some special problems of

this kind. In this study, a stochastic intelligent optimization method based on the state transition al-

gorithm is introduced to solve the SNL problem without additional assumptions and conditions on the

problem structure. To transcend local optimality, a novel dynamic adjustment strategy called “risk and

restoration in probability”is incorporated into the state transition algorithm. An empirical study is in-

vestigated to appropriately choose the risk probability and restoration probability, yielding the dynamic

state transition algorithm, which is further improved with gradient-based refinement. The refined dy-

namic state transition algorithm is applied to the SNL problem, and satisfactory simulation results show

the effectiveness of the proposed approach.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In recent decades, ad hoc wireless sensor networks have re-

ceived considerable attention due to easy installation and simple

operation [1–9] . A typical sensor network consists of a large set

of sensors distributed in a geographical area. Sensor nodes col-

lect the local information, such as temperature, humidity, and vi-

bration motion, and communicate with other neighboring nodes,

which are the nodes if the distance between them is below certain

radio range. The sensor data collected from these nodes are rele-

vant only if the node positions are known. Although locating these

positions can be achieved through manual configuration or by us-

ing Global Positioning System (GPS) techniques, neither works well

and both have physical limitations. As a result, techniques to es-

timate node positions have shifted to develop methods that rely

only on the distance measures between neighboring nodes. The

distance information could be based on criteria such as time of

arrival, time-difference of arrival, or received RF (radio frequency)

signal strength. We may further assume that we already know the

exact positions of a few sensor nodes, which we will refer to as

∗ Corresponding author.

E-mail address: ychh@csu.edu.cn (C. Yang).

anchors, and it should be noted that the determination of anchor

points is costly in real-world applications. Given the positions of

the anchor nodes and the relative distance between neighboring

nodes, the problem of finding the positions of all the unknown

sensor nodes is called the sensor network localization (SNL) prob-

lem. The SNL problem is a nonlinear equation problem in its orig-

inal form, whereas by using the least squares method, the SNL

problem can be converted into a non-convex optimization problem

[10] .

The difficulty of locating the unknown sensors accurately is

three-fold: (1) the distance measurements may contain some noise

or uncertainty, (2) it is not easy to identify the sufficient condi-

tions for the sensor network to be localizable, and (3) the sen-

sor network localization problem is proved to be NP-hard [11] . The

NP-hardness has led to effort s being directed at solving this prob-

lem approximately or solving it completely under certain condi-

tions. Semi-definite programming (SDP) relaxation has been widely

used for the SNL problem [10,12–14] , but the solutions obtained

by SDP relaxation are not generally optimal or are even infeasible.

It is therefore necessary to round the SDP solution to a subopti-

mal and feasible one. Since the distance measurements inevitably

contain noise or uncertainties, methods for rounding the SDP so-

lution may become not so robust and reliable. Second-order cone

programming (SOCP) relaxation has also found applications for the

http://dx.doi.org/10.1016/j.neucom.2017.08.010

0925-2312/© 2017 Elsevier B.V. All rights reserved.

238 X. Zhou et al. / Neurocomputing 273 (2018) 237–250

SNL problem [15,16] . It is shown that even if it is weaker than

SDP relaxation, the SOCP relaxation has a simpler structure and

nicer properties that can make it useful as a problem preproces-

sor due to its faster speed. It should be noted that both SDP and

SOCP relaxation in essence are gradient-based methods, and other

gradient-based methods for the SNL problem can also be found in

[17–21] .

To the best of our knowledge, there exist very few stochas-

tic methods for the SNL problem. While some particle swarm op-

timization algorithms have been used to solve the SNL problem

[22–24] , but the sizes of their problems in practice were limited to

less than 100. The state transition algorithm (STA) has emerged in

recent years as a novel stochastic intelligent optimization method.

In the STA, a solution to an optimization problem is regarded as

a state and a transformation of current solution is regarded as a

state transition [25] . It uses state space representation, thus it can

generate candidate solutions in a unified framework, and the ex-

ecution operators for generating candidate solutions are expressed

as state transition matrices, which makes it easy to understand and

flexible to implement. In the continuous STA, there exist four state

transformation operators: rotation, translation, expansion, and ax-

esion. These operators have special characteristics that cover the

local and global search capability. For example, the rotation oper-

ator can search in a hypersphere within a given radius, thus be-

longing to a local search, while the expansion operator can explore

the whole space, thus belonging to a global search. The job special-

ization is convenient for users when manipulating the STA accord-

ing to their demands. The strong global search ability and adapt-

ability of the STA have been demonstrated by comparison with

other global optimization algorithms and real-world applications

[25–32] .

In this paper, we use the STA to find a solution for the SNL

problem with a size that can exceed 100. The STA is a stochastic

global optimization algorithm, thus it can find a global solution to

the SNL problem without additional assumptions and conditions.

Nevertheless, like most stochastic optimization algorithms, it will

inevitably get trapped in local minima with a limited amount of

time. To transcend local optimality, a dynamic adjustment strategy

called “risk and restoration in probability” is proposed to improve

the global search ability. Risk in probability means that a relatively

worse solution is accepted for the next iteration with probability

p risk , while restoration in probability means that the historical best

solution is restored with probability p rest . The values of these two

probability are investigated by an empirical study in this study.

With the proposed dynamic adjustment strategy, a dynamic STA

with refinement is presented for the SNL problem. Several simu-

lation results have demonstrated the effectiveness of the proposed

approach.

The main contribution of this paper is three-fold. First, a fast

rotation transformation operator is designed to reduce the compu-

tational complexity. Second, a dynamic STA with “risk and restora-

tion in probability” strategy is proposed to escape from local op-

timality, and a good combination of the risk probability and the

restoration probability is obtained by an empirical study. Third, the

proposed dynamic STA with refinement is successfully applied to

the sensor network localization problem.

The rest of this paper is organized as follows. The sensor net-

work localization problem is formulated in Section 2 . Then, in

Section 3 , we give a brief review of the basic STA. In Section 4 ,

a fast rotation transformation is proposed, the local convergence

analysis of the basic STA is discussed and a dynamic adjustment

strategy is proposed to improve its global search ability. The pro-

posed dynamic STA with refinement is applied to the sensor net-

work localization problem in Section 5 , and the concluding re-

marks are given in Section 6 .

2. Sensor network localization problem

Given m anchor points a 1 , . . . , a m

∈ R

d (d is usually 2 or 3, d = 2

in this study), the Euclidean distance d ij between the i th and j th

anchor points for (i , j) ∈ N x , and the distance d̄ ik between the i th

sensor and k th anchor points for (i , k) ∈ N a , with N x = { (i, j) : ‖ x i −
x j ‖ = d i j ≤ r d } and N a = { (i, k) : ‖ x i − a k ‖ = d̄ ik ≤ r d } , where, r d is
the radio range, the sensor network localization (SNL) problem is

to find n distinct sensor points x i , i = 1 , . . . , n, such that

‖ x i − x j ‖

2 =d 2 i j , ∀ (i, j) ∈ N x , (1a)

‖ x i − a k ‖

2 = d̄ 2 ik , ∀ (i, k) ∈ N a . (1b)

Two most commonly used methods to solve the SNL prob-

lem are SDP relaxation and SOCP relaxation. Let X = [x 1 , x 2 , . . . , x n]

be the unknown matrix to be determined and Y = X T X . Then Eq.

(1a) can be rewritten as

e T i j Ye i j = d 2 i j , ∀ (i, j) ∈ N x

Y = X T X,

where e i j ∈ R

n is the sparse vector with nonzero values 1 and −1
at the i th and the j th positions, respectively. The trick of SDP relax-

ation method is to relax Y = X T X to Y �X T X and then reformulate

it to a SDP problem. The similarity applies for the SOCP relaxation

method. Firstly, Eq. (1a) can be equivalently written as

min
∑

(i, j) ∈ N x
| y i j −d 2 i j |

s . t . y i j = ‖ x i −x j ‖

2 , ∀ (i, j) ∈ N x .

By introducing auxiliary variables t ij , relaxing y i j = ‖ x i −x j ‖ 2 to
y i j ≥ ‖ x i −x j ‖ 2 yields the following SOCP problem

min
∑

(i, j) ∈ N x
t i j

s . t . y i j ≥ ‖ x i −x j ‖

2 , ∀ (i, j) ∈ N x

t i j ≥ | y i j −d 2 i j | , ∀ (i, j) ∈ N x .

The aforementioned relaxation methods have an inevitable lim-

itation, that is, the original problem is equivalent to the relaxation

problem only if these inequality constraints are active. If they are

not, there exists an inherent relaxation gap, making the solution of

the relaxation problem infeasible for the original problem. In other

words, these relaxation methods only work when a SNL problem

has certain special structures. To be more practical, a general SNL

problem is considered to be solved in this study. Since distances

d ij and d̄ ik may contain noise, making Eqs. (1a) and (1b) infeasible,

we reformulate the SNL problem using the least squares method

as the following nonconvex optimization problem

min
∑

(i, j) ∈ N x
(‖ x i −x j ‖

2 −d 2 i j)
2 +

∑

(i,k) ∈ N a
(‖ x i −a k ‖

2 −d̄ 2 ik)
2 . (2)

Considering that local minima exist in the nonconvex optimiza-

tion problem, the goal of this study is to find a global solution to

this problem using a novel stochastic global optimization method

called STA. To expedite the search process and to improve its global

search ability, some modifications are added to the basic STA. In

the following section, a brief review of STA is presented.

3. A brief review of the basic STA

In numerical optimization, it usually adopts an iterative method

to transform the current solution x k to the next one x k +1 via
designing appropriate operators. For deterministic optimization

methods, like gradient descent method, the first order differential

X. Zhou et al. / Neurocomputing 273 (2018) 237–250 239

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

1.4

1.6

1.8

2

2.2

2.4

2.6

x1

x 2

xk+1
xk

Fig. 1. Illustration of the rotation transformation (α = 1). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article).

operator is added to generate the next candidate solution, while

in Newton’s method, both the first and second order differential

operators are utilized. For stochastic optimization methods, like

crossover and mutation operators in genetic algorithm, and posi-

tion and velocity update operators in particle swarm optimization,

they all aim to transform current solutions to next candidate so-

lutions. Similarly, in a state transition way, a solution can be re-

garded as a state, and the transformation of a solution can be con-

sidered as a state transition process. On the basis of state space

representation, the unified form of generating new candidate states

in STA can be described as follows: {
x k +1 = A k x k + B k u k

y k +1 = f (x k +1) ,
(3)

where x k = [x 1 , x 2 , . . . , x n]
T ∈ R

n stands for a state corresponding

to a solution of the optimization problem, u k is a function of

x k and historical states, y k is the fitness value at x k , A k and B k
are state transition matrices, which are usually some transfor-

mation operators, and f is the objective function or evaluation

function.

3.1. State transformation operators

Using space transformation, the following four special state

transformation operators are designed to generate new candidate

solutions.

(1) Rotation transformation (RT)

x k +1 = x k + α
1

n ‖ x k ‖ 2

R r x k , (4)

where α is a positive constant, called the rotation factor, R r ∈

R

n ×n , is a random matrix with its entries being uniformly dis-

tributed random variables defined on the interval [−1, 1], and ‖ · ‖ 2
is the 2-norm of a vector. This rotation transformation has the

function of searching in a hypersphere with a maximal radius α,

1 1.5 2 2.5
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

x1

x 2

xk+1

xk−1
xk

Fig. 2. Illustration of the translation transformation (β = 1).

as shown below

‖ x k +1 − x k ‖ 2 = ‖ α
1

n ‖ x k ‖ 2

R r x k ‖ 2

=

α

n ‖ x k ‖ 2

‖ R r x k ‖ 2

≤ α

n ‖ x k ‖ 2

‖ R r ‖ m ∞ ‖ x k ‖ 2 ≤ α.

(5)

The illustration of the RT in 2-D is given in Fig. 1 , here, the current

solution x k = [x 1 , x 2]
T = (2 , 2) , marked in red, and the next candi-

date solutions x k +1 are marked in blue by performing thousands of
times of rotation transformation.

(2) Translation transformation (TT)

x k +1 = x k + βR t
x k − x k −1

‖ x k − x k −1 ‖ 2

, (6)

where β is a positive constant, called the translation factor, and

R t ∈ R is a uniformly distributed random variable defined on the

interval [0,1]. Fig. 2 shows that the translation transformation has

240 X. Zhou et al. / Neurocomputing 273 (2018) 237–250

−6 −4 −2 0 2 4 6 8 10

−4

−2

0

2

4

6

x1

x 2

xk+1
xk

Fig. 3. Illustration of the expansion transformation (γ = 1).

the function of searching along a line from x k −1 = (1 , 1) to x k =

(2 , 2) at the starting point x k with maximal length β .
(3) Expansion transformation (ET)

x k +1 = x k + γ R e x k , (7)

where γ is a positive constant, called the expansion factor, and

R e ∈ R

n ×n is a random diagonal matrix with its entries obeying the

Gaussian distribution. Fig. 3 shows that the expansion transforma-

tion has the function of expanding the entries in x k to the range of

[−∞ , + ∞], searching in the whole space. Here, x k = (2 , 2) .

(4) Axesion transformation (AT)

x k +1 = x k + δR a x k , (8)

where δ is a positive constant, called the axesion factor, and

R a ∈ R

n ×n is a random diagonal matrix with its entries obeying the

Gaussian distribution and with only one random position having

nonzero value. As illustrated in Fig. 4 , the axesion transformation

is aiming to search along the axes. Here, x k = (2 , 2) .

Remark 1. In the basic STA, from their intrinsic properties, the ro-

tation transformation is used for exploitation (local search), the ex-

pansion is used for exploration (global search), the translation is a

line search that is applied only when a better solution is found,

and the axesion is for strengthening the single dimensional search.

3.2. Regular neighborhood and sampling

For a given solution, a candidate solution is generated by us-

ing one time of the aforementioned state transformation opera-

tors. Since the state transition matrix in each state transformation

is random, the generated candidate solution is not unique. Based

on the same given point, it is not difficult to imagine that a regu-

lar neighborhood will be automatically formed when using certain

state transition operator, as illustrated from Figs. 1 to 4 . In theory,

the number of candidate solutions in the neighborhood is infinity;

as a result, it is impractical to enumerate all possible candidate so-

lutions.

Since the entries in state transition matrix obey certain stochas-

tic distribution, for any given solution, the new candidate becomes

a random vector and its corresponding solution (the value of a ran-

dom vector) can be regarded as a sample. Considering that any

two random state transition matrices in each state transformation

are independent, several times of state transformation (called the

degree of search enforcement, SE for short) based on the same

given solution are performed for certain state transition operator,

consisting of SE samples. It is not difficult to find that all of the

SE samples are independent, and they are representatives of the

neighborhood. Taking the rotation transformation for example, a

total number of SE samples are generated in pseudocode as fol-

lows:

1: for i ← 1 , SE do

2: State (: , i) ← Best + α 1
n ‖ Best ‖ 2 R r Best

3: end for

where Best is the incumbent best solution, and SE samples are

stored in the matrix State .

3.3. An update strategy

As mentioned above, based on the incumbent best solution, a

total number of SE candidate solutions are sampled. A new best

solution is selected from the candidate set by virtue of the evalua-

tion function, denoted as newBest . Then, an update strategy based

on greedy criterion is used to update the incumbent best as shown

below

Best =

{
newBest , if f (newBest) < f (Best) ,

Best , otherwise .

3.4. Algorithm procedure of the basic STA

With the state transformation operators, sampling technique

and update strategy, the basic STA can be described by the follow-

ing pseudocode

As for detailed explanations, rotation(·) in above pseudocode is
given for illustration purposes as follows

Remark 2. In the aforementioned pseudocodes, expansion(·), ro-
tation(·) and axesion(·) are implementations of corresponding

X. Zhou et al. / Neurocomputing 273 (2018) 237–250 241

−6 −4 −2 0 2 4 6 8

−4

−2

0

2

4

6

8

x1

x 2

xk+1
xk

Fig. 4. Illustration of the axesion transformation (δ = 1) .

Algorithm 1 The basic STA.

1: procedure STA (funfcn , Best0 , SE , α, β, γ , δ)
2: Best ← Best0

3: repeat

4: if α < αmin then

5: α ← αmax

6: end if

7: Best ← expansion(funfcn,Best,SE, β , γ)
8: Best ← rotation(funfcn,Best,SE, α, β)
9: Best ← axesion(funfcn,Best,SE, β , δ)
10: α ←

α
fc

11: until the specified termination criterion is met

12: end procedure

state transformation, sampling technique and update strategy. fun-

fcn is the name of a function that needs to be optimized. The ro-

tation factor α decreases periodically from a maximum value αmax

to a minimum value αmin exponentially with base fc , which is

called lessening coefficient. op_rotate(·) and op_translate(·) repre-
sent the implementations of proposed sampling technique for ro-

tation and translation operators, respectively, and fitness(·) repre-
sents the implementation of selecting the new best solution from

SE samples. It should be noted that the translation operator is only

executed when a solution better than the incumbent best solu-

tion can be found in the SE samples from rotation, expansion or

axesion transformation. In the basic STA, the parameter settings

are given as follows: αmax = 1 , αmin = 1 e − 4 , β = 1 , γ = 1 , δ = 1 ,

SE = 30 , fc = 2 .

4. Dynamic STA

Although the basic STA performs well for the majority of the

benchmark functions as shown in the experimental results of [25] ,

it behaves weakly for the Rosenbrock function. In fact, the Rosen-

brock function is considered as a hard case for most determin-

istic and stochastic optimization algorithms, and more specially,

its structure, known as the fourth-order polynomial, is similar to

the SNL problem in our study. Furthermore, from the experimen-

1: function rotation (funfcn,Best,SE, α, β)
2: oldBest ← Best

3: fBest ← feval(funfcn,oldBest)

4: State ← op_rotate(Best,SE, α)
5: [newBest,fnewBest] ← fitness(funfcn,State)

6: if fnewBest < fBest then

7: Best ← newBest

8: fBest ← fnewBest

9: State ← op_translate(oldBest,newBest,SE, β)
10: [newBest,fnewBest] ← fitness(funfcn,State)

11: if fnewBest < fBest then

12: fBest ← fnewBest

13: Best ← newBest

14: end if

15: end if

16: end function

tal results in [28] , as the iterations increase, the objective value

of Rosenbrock function still decreases, but at a very slow speed.

That is to say, the global search ability of STA is not bad but its

local search for the fourth-order polynomial (the Rosenbrock prob-

lem and the SNL problem belong to this type) is not so good. As a

result, in this section, firstly, a fast rotation transformation is pro-

posed to replace the original one. Then, a convergence analysis of

STA is discussed based on monotone convergence theorem. Finally,

we focus on how to jump out from local minima using a dynamic

adjustment strategy, called “risk and restoration in probability”, in

other words, the dynamic STA risks accepting a relatively worse so-

lution with one probability and restores the historical best solution

with another probability.

4.1. Fast rotation transformation

As illustrated in Fig. 1 , the rotation transformation searches a

hypersphere within a given radius, but a random matrix needs to

be generated for every rotation transformation. To reduce the com-

putational complexity, a fast rotation transformation is proposed as

follows:

242 X. Zhou et al. / Neurocomputing 273 (2018) 237–250

1 1.5 2 2.5 3

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

x1

x 2

xk+1
xk

Fig. 5. Illustration of the fast rotation transformation.

(5) Fast rotation transformation

x k +1 = x k + α ˆ R r
u

‖ u ‖ 2

, (9)

where ˆ R r ∈ R is a uniformly distributed random variable defined

on the interval [−1,1] and u ∈ R

n is a vector with its entries be-

ing uniformly distributed random variables defined on the interval

[−1,1]. It is easy to verify that

‖ x k +1 − x k ‖ 2 =

∥∥∥α ˆ R r
u

‖ u ‖ 2

∥∥∥2
= α‖ ̂

 R r ‖ 2 ≤ α.

(10)

The illustration of the fast rotation transformation, where x k =

(2 , 2) , is given in Fig. 5 . Compared with the original rotation oper-

ator, the fast rotation transformation has low computational com-

plexity since the new random variable ˆ R r is a scalar and not a

matrix R r . The computational time for two rotation operators is

compared in Fig. 6 , where, at each fixed dimension, we run the

two rotation operators for 10,0 0 0 times on an Intel(R) Core(TM)

i3-2310M CPU @2.10GHz under Windows 7. It is clear that the

fast rotation operator can save a significant amount of computing

time.

4.2. Convergence analysis of STA

In this subsection, we show that the basic STA can at least

converge to a local minimum. From a control theory perspec-

tive, the evolution of the incumbent best state x ∗
k
in STA using

the greedy criterion can be regarded as a discrete-time switched

system

x ∗k +1 =

{
A k x

∗
k
+ B k u k , if f (A k x

∗
k
+ B k u k) < f (x ∗

k
) ,

x ∗
k
, otherwise .

(11)

A switched system contains some interesting stability phenom-

ena. For instance, even when all the subsystems are exponentially

stable, a switched system may have divergent trajectories for cer-

tain switching signals. That is to say, the stability of a switched

system depends not only on the dynamics of each subsystem but

also on the properties of switching signals.

Theorem 1. The sequences { f (x ∗
k
) } ∞

k =0 generated by the STA can at
least converge to a local minimum, i.e. ,

lim

k →∞

f (x ∗k) = f (̄x ∗) (12)

where x̄ ∗ is a local minimum.

Proof. Since f (x ∗
k +1) ≤ f (x ∗

k
) and f (x ∗

k
) is bounded below on R

n ,

i.e. , the global solution can be achieved, the sequence { f (x ∗
k
) } ∞

k =0
converges according to the monotone convergence theorem .

Denote x̄ ∗ as the limiting point of the sequence { f (x ∗
k
) } ∞

k =0 . Due
to the rotation operator and accepting criteria used in the STA, it

is easy to find that

f (̄x ∗) ≤ f (x) , ∀ ‖ x − x̄ ∗‖ ≤ αmin (13)

that is to say, x̄ ∗ is a local minimum when the value of αmin is

sufficiently small. This completes the proof. �

4.3. Transcending local optimality

Note that although the sequence { f (x ∗
k
) } ∞

k =0 converges when k
approaches infinity, it does not mean that the sequence converges

to the global solution. This phenomenon is called “premature con-

vergence” in the evolutionary computation community. From a

practical point of view, “premature convergence” is inevitable since

there is no prior knowledge to judge whether a solution is in-

deed the global solution. Thus, how to jump out of local minima

becomes a significant issue. Risking a relatively bad solution in

probability is an effective strategy to escape from local minima,

as indicated in simulated annealing [33] , but it is computation-

ally expensive to achieve convergence [34] . In this study, a new

strategy called “risk and restoration in probability” is proposed.

For each state transformation in the inner loop, a relatively worse

solution is accepted based on the risk probability. While in the

outer loop, the best solution, which is stored in external archive,

X. Zhou et al. / Neurocomputing 273 (2018) 237–250 243

0 100 200 300 400 500
10−1

100

101

102

103

n (dimension)

co
m

pu
ta

tio
na

l t
im

e
(s

)

rotation
fast rotation

Fig. 6. Comparison of the computational time for rotation operators.

is restored to update the incumbent current solution. The pseu-

docode for the proposed dynamic STA in the outer loop is given

below

Algorithm 2 The dynamic STA.

1: procedure STA (funfcn , Best0 , SE , α, β, γ , δ)
2: repeat

3: if α(β, γ , δ) < αmin (βmin , γmin , δmin) then

4: α(β, γ , δ) ← αmax (βmax , γmax , δmax)
5: end if

6: [Best,fBest] ← expansion(funfcn,Best,SE, β, γ)
7: [Best,fBest] ← rotation_fast(funfcn,Best,SE, α, β)
8: [Best,fBest] ← axesion(funfcn,Best,SE, β, δ)
9: if fBest < fBest ∗ then

10: Best ∗ ← Best

11: fBest ∗ ← fBest

12: end if

13: if rand < p rest then � restoration in probability

14: Best ← Best ∗

15: fBest ← fBest ∗

16: end if

17: α(β, γ , δ) ←

α(β,γ ,δ)
fc

18: until the maximum number of iterations is met

19: end procedure

In the inner loop, taking the expansion function for example,

the pseudocode is given below

Remark 3. In the dynamic STA, a fast rotation operator is intro-

duced. Furthermore, not only α, but also β , γ and δ decrease from

a maximum value to a minimum value exponentially with base fc ,

which will be helpful for exploitation in the later stage. Best and

fBest are the incumbent current solution and its function value,

Best ∗ and fBest ∗ are the best solution and its function value in his-
tory, respectively, and they are all kept in an external archive. p rest
and p risk are the restoration probability and the risk probability,

respectively. Compared with the accepting criteria in simulated an-

nealing, the “risk and restoration in probability” strategy is easier

to implement and has better convergence performance since the

best solution in history is always kept and restored frequently.

1: function rotation_fast (funfcn,Best,SE, α, β))
2: oldBest ← Best

3: fBest ← feval(funfcn,oldBest)

4: State ← op_roate_fast(Best,SE, α)
5: [newBest,fnewBest] ← fitness(funfcn,State)

6: if fnewBest < fBest then

7: Best ← newBest

8: fBest ← fnewBest

9: State ← op_translate(oldBest,newBest,SE, β)
10: [newBest,fnewBest] ← fitness(funfcn,State)

11: if fnewBest < fBest then

12: fBest ← fnewBest

13: Best ← newBest

14: end if

15: else

16: if rand < p risk then � risk in probability

17: Best ← newBest

18: fBest ← fnewBest

19: end if

20: end if

21: end function

4.4. Benchmark functions test

To evaluate the performance of the dynamic STA and to find a

good combination of the restoration probability and the risk prob-

ability, some well-known benchmark functions are used for an em-

pirical study, and they are listed below.

Spherical function

f 1 =

n ∑

i =1
x 2 i , x i ∈ [0 , 100] ,

244 X. Zhou et al. / Neurocomputing 273 (2018) 237–250

Table 1

Parametric study of the dynamic STA (dimension = 100, iterations = 10,0 0 0).

Functions p rest p risk

0.1 0.3 0.5 0.7 0.9

Spherical 0.1 0 ± 0 ≈ a 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 1.6231e −15 ± 5.1263e −15 −
0.3 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈
0.5 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈
0.7 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈
0.9 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈

Rastrigin 0.1 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 3.3651e −12 ± 6.5316e −12 −
0.3 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 5.6843e −15 ± 2.5421e −14 −
0.5 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈
0.7 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈
0.9 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 1.1369e −14 ± 5.0842e −14 −

Griewank 0.1 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 5.4956e −16 ± 1.3119e −15 −
0.3 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈
0.5 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈
0.7 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈
0.9 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈

Rosenbrock 0.1 34.9246 ± 48.8835 − 80.9344 ± 29.7257 − 83.5215 ± 19.7759 − 87.8305 ± 0.3616 − 88.0899 ± 0.2990 −
0.3 6.7223 ± 16.3449 ≈ 32.5569 ± 45.5968 − 94.9096 ± 43.6650 − 111.6440 ± 56.4694 − 106.1008 ± 49.9611 −
0.5 6.2421 ± 17.6002 ≈ 2.1033 ± 2.6610+ 28.3665 ± 54.6751 − 95.1745 ± 73.8811 − 91.6837 ± 77.8627 −
0.7 6.7115 ± 15.0144 ≈ 16.8595 ± 34.9808 − 16.2994 ± 36.4491 − 24.7477 ± 35.8102 − 20.8548 ± 51.9346 −
0.9 3.1765 ± 3.0737+ 6.0835 ± 18.3434 ≈ 6.2828 ± 18.1138 ≈ 1.7381 ± 2.1587+ 31.9860 ± 61.3152 −

Ackley 0.1 −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ 2.8025e −9 ± 4.4539e −9 −
0.3 −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈
0.5 −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈
0.7 −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈
0.9 −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈

Methods Spherical Rastrigin Griewank Rosenbrock Ackley

STA 0 ± 0 b 0 ± 0 0 ± 0 6.7952 ± 7.2544 −8.8818e −16 ± 0

a +, − and ≈ denote that the performance of corresponding algorithm is better than, worse than, and similar to that of the STA by the Wilcoxon rank sum

test.
b ± denotes “mean ± standard deviation”.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
100

102

104

106

108

1010

Iterations

A
ve

ra
ge

 fu
nc

tio
n

va
lu

es

prest=0.9,prisk=0.1

prest=0.9,prisk=0.3

prest=0.9,prisk=0.5

prest=0.9,prisk=0.7

prest=0.9,prisk=0.9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
100

102

104

106

108

1010

Iterations

A
ve

ra
ge

 fu
nc

tio
n

va
lu

es

prest=0.1,prisk=0.3

prest=0.3,prisk=0.3

prest=0.5,prisk=0.3

prest=0.7,prisk=0.3

prest=0.9,prisk=0.3

Fig. 7. Iterative curves of the dynamic STA with fixed “risk probability” p rest = 0 . 9 or “restoration probability” p risk = 0 . 3 .

Rastrigin function

f 2 =

n ∑

i =1
(x 2 i − 10 cos (2 πx i) + 10) , x i ∈ [0 , 5 . 12] ,

Griewank function

f 3 =

1

40 0 0

n ∑

i =1
x 2 i −

n ∏

i

cos

∣∣∣∣ x i √

i

∣∣∣∣ + 1 , x i ∈ [0 , 600] ,

Rosenbrock function

f 4 =

n ∑

i =1
(100(x i +1 − x 2 i)

2 + (x i − 1) 2) , x i ∈ [0 , 30] ,

Ackley function

f 5 = −20 exp
(

−0 . 2
√

1

n

n ∑

i =1
x 2
i

)

− exp

(

1

n

n ∑

i =1
cos (2 πx i)

)

+ 20 + e, x i ∈ [0 , 32] .

To investigate the effect of parameters in the dynamic adjust-

ment strategy of the STA, we arranged empirical studies in order

to find a satisfactory combination of p rest and p risk . First, with fixed

dimension (problem size) and maximum number of iterations,

some experimental tests are performed on the benchmark func-

tions with different groups of (p rest , p risk) . Table 1 shows the com-

X. Zhou et al. / Neurocomputing 273 (2018) 237–250 245

Table 2

Performance of the dynamic STA for Rosenbrock function before refinement (dimension = 100).

Iterations p rest p risk

0.1 0.3 0.5 0.7 0.9

10,0 0 0 0.1 34.9246 ± 48.8835 − 80.9344 ± 29.7257 − 83.5215 ± 19.7759 − 87.8305 ± 0.3616 − 88.0899 ± 0.2990 −
0.3 6.7223 ± 16.3449 ≈ 32.5569 ± 45.5968 − 94.9096 ± 43.6650 − 111.6440 ± 56.4694 − 106.1008 ± 49.9611 −
0.5 6.2421 ± 17.6002 ≈ 2.1033 ± 2.6610+ 28.3665 ± 54.6751 − 95.1745 ± 73.8811 − 91.6837 ± 77.8627 −
0.7 6.7115 ± 15.0144 ≈ 16.8595 ± 34.9808 − 16.2994 ± 36.4491 − 24.7477 ± 35.8102 − 20.8548 ± 51.9346 −
0.9 3.1765 ± 3.0737+ 6.0835 ± 18.3434 ≈ 6.2828 ± 18.1138 ≈ 1.7381 ± 2.1587+ 31.9860 ± 61.3152 −

20,0 0 0 0.1 36.6229 ± 41.1742 − 70.7605 ± 30.1326 − 80.3873 ± 18.9506 − 84.8749 ± 0.2333 − 85.4611 ± 0.2593 −
0.3 1.3527 ± 1.6541+ 22.8921 ± 41.2240 − 62.3492 ± 58.6085 − 84.2958 ± 25.5081 − 100.3479 ± 44.1913 −
0.5 6.7016 ± 18.1658 − 1.3524 ± 1.6784+ 21.9584 ± 47.6510 − 48.4355 ± 58.3758 − 69.9912 ± 63.0667 −
0.7 1.8801 ± 2.0266+ 6.4236 ± 19.8274 − 6.8750 ± 21.5073 − 2.2362 ± 1.8067+ 21.3934 ± 42.2174 −
0.9 2.1100 ± 1.5590+ 1.9741 ± 1.9684+ 2.2778 ± 1.8401+ 11.8520 ± 34.9652 − 18.9113 ± 38.2404 −

30,0 0 0 0.1 8.1871 ± 22.3389 − 59.4579 ± 34.4171 − 81.9436 ± 0.8132 − 82.8267 ± 0.2116 − 83.5295 ± 0.2513 −
0.3 2.4303 ± 3.5954 ≈ 30.1052 ± 44.2706 − 59.8675 ± 39.3182 − 83.9215 ± 39.0975 − 84.6498 ± 14.2251 −
0.5 1.0879 ± 1.3156+ 8.7277 ± 20.7838 − 18.0923 ± 41.2037 − 61.8106 ± 70.4271 − 74.3550 ± 64.2713 −
0.7 0.7939 ± 0.8984+ 1.3687 ± 1.1653+ 9.9566 ± 24.4415 − 10.3543 ± 27.5641 − 33.5537 ± 49.5459 −
0.9 1.2680 ± 1.1676+ 1.2800 ± 1.1730+ 1.0241 ± 1.1646+ 0.7466 ± 0.9355+ 1.3722 ± 1.0550+

40,0 0 0 0.1 15.5817 ± 27.3889 − 57.2248 ± 33.4997 − 75.8210 ± 17.6466 − 81.0726 ± 0.3210 − 81.9298 ± 0.2200 −
0.3 0.6875 ± 0.8192+ 9.3453 ± 23.8299 − 46.0035 ± 46.7455 − 69.6654 ± 39.9633 − 84.8464 ± 21.9926 −
0.5 1.0538 ± 1.1154+ 13.0401 ± 29.9575 − 11.1267 ± 27.4796 − 17.6139 ± 30.8468 − 46.1817 ± 47.4052 −
0.7 0.9147 ± 0.6730+ 1.3028 ± 0.9836 ≈ 0.5366 ± 0.7615+ 0.7609 ± 0.8081+ 27.7787 ± 46.9281 −
0.9 1.0351 ± 0.8745+ 0.7861 ± 0.7066+ 0.5277 ± 0.8042+ 1.2816 ± 0.7297 ≈ 10.2427 ± 29.4908 −

50,0 0 0 0.1 3.9619 ± 14.1378 − 64.2790 ± 27.5534 − 77.8868 ± 0.3830 − 79.5461 ± 0.2291 − 80.5820 ± 0.2589 −
0.3 0.7379 ± 0.7578+ 15.7587 ± 30.7724 − 26.7952 ± 36.4140 − 42.4749 ± 36.2685 − 79.6220 ± 37.3989 −
0.5 0.5307 ± 0.5997+ 0.5488 ± 0.7058+ 4.4704 ± 16.5813 − 26.8494 ± 42.6035 − 66.1161 ± 56.9610 −
0.7 0.6374 ± 0.5889+ 0.5150 ± 0.5831+ 5.5514 ± 14.3693 − 0.6901 ± 0.9297+ 10.1952 ± 25.8581 −
0.9 0.4749 ± 0.5146+ 0.6032 ± 0.6193+ 0.6189 ± 0.5609+ 1.3870 ± 3.8526 − 1.2649 ± 2.1263 −

Methods 10,0 0 0 20,0 0 0 30,0 0 0 40,0 0 0 50,0 0 0

STA 6.7952 ± 7.2544 5.7962 ± 2.8367 2.8918 ± 1.9632 1.6408 ± 1.1822 1.0805 ± 0.7956

+, − and ≈ denote that the performance of corresponding algorithm is better than, worse than, and similar to that of the STA by the Wilcoxon rank sum test

± denotes “mean ± standard deviation”.

Table 3

Performance of the dynamic STA for Rosenbrock function after refinement (dimension = 100).

Iterations p rest p risk

0.1 0.3 0.5 0.7 0.9

10,0 0 0 0.1 21.1587 ± 36.1116 − 53.1184 ± 29.5350 − 63.3643 ± 20.1991 − 70.5142 ± 1.3252 − 70.2448 ± 1.0381 −
0.3 0.0204 ± 0.0912 ≈ 7.5377 ± 22.0972 − 42.4304 ± 38.3322 − 50.5568 ± 42.2048 − 60.5727 ± 31.6022 −
0.5 0.2802 ± 1.2511 − 4.0550e −4 ± 0.0018+ 5.7047 ± 17.5013 − 51.1806 ± 54.7261 − 47.0276 ± 46.6980 −
0.7 5.7870e −4 ± 0.0026+ 2.6333e −6 ± 8.7040e −6+ 9.7799e −4 ± 0.0044+ 10.3570 ± 25.3780 − 10.3748 ± 25.3956 −
0.9 0.0013 ± 0.0057 ≈ 5.7115e −5 ± 2.5542e −4+ 0.0920 ± 0.4115 ≈ 9.3007e −10 ± 1.4912e −9+ 4.2359 ± 16.8367 −

20,0 0 0 0.1 17.6076 ± 31.7114 − 57.2231 ± 24.6991 − 64.7344 ± 15.3070 − 65.4911 ± 13.0773 − 68.9557 ± 1.0903 −
0.3 1.2964e −9 ± 1.7722e −9+ 4.5672e −9 ± 1.5513e −8 − 27.0481 ± 33.2740 − 53.1332 ± 26.1597 − 65.3754 ± 24.7380 −
0.5 3.3265 ± 14.8456 − 9.1372e −9 ± 3.6650e −8+ 5.4289 ± 18.2178 − 25.2178 ± 41.7371 − 28.3450 ± 36.0765 −
0.7 1.7181e −9 ± 2.9007e −9+ 0.2978 ± 1.3318 − 3.9112 ± 17.4915 − 2.3355e −9 ± 2.3355e −9+ 4.3373 ± 19.3952 −
0.9 2.5848e −9 ± 4.0031e −9+ 6.4586e −9 ± 2.4736e −8+ 9.7906e −10 ± 1.4118e −9+ 1.8054 ± 7.5612 − 7.2380e −8 ± 3.2018e −7+

30,0 0 0 0.1 5.8828 ± 18.1071 − 45.2268 ± 30.3826 − 66.6607 ± 0.9523 − 66.9913 ± 0.9594 − 67.1216 ± 1.0454 −
0.3 0.1111 ± 0.4969 − 8.9327 ± 21.3730 − 28.6617 ± 36.1546 − 53.0224 ± 27.8523 − 61.5713 ± 18.5342 −
0.5 9.1503e −10 ± 1.4908e −9 ≈ 2.8200 ± 12.6115 − 10.7349 ± 25.6296 − 21.6996 ± 32.4225 − 32.2821 ± 41.0405 −
0.7 4.9650e −10 ± 5.4828e −10 ≈ 1.0867e −9 ± 1.4004e −9 ≈ 0.2918 ± 1.3052 − 3.8141 ± 13.5439 − 7.9870 ± 22.5467 −
0.9 1.6998e −9 ± 2.7782e −9 ≈ 1.4478e −9 ± 2.1626e −9 ≈ 8.5037e −10 ± 1.5985e −9 ≈ 2.4864e −7 ± 1.1101e −6 − 2.2585e −9 ± 6.0799e −9 ≈

40,0 0 0 0.1 10.7407 ± 21.8229 − 40.3449 ± 30.3853 − 61.1384 ± 14.4172 − 65.1246 ± 1.04 4 4 − 65.3149 ± 0.9135 −
0.3 4.7625e −10 ± 5.8946e −10 ≈ 6.6588 ± 18.9926 − 17.8645 ± 27.0329 − 40.9452 ± 29.2316 − 56.2615 ± 19.3012 −
0.5 1.2431e −9 ± 2.7342e −9 ≈ 0.2716 ± 0.8660 − 4.8668 ± 19.8535 − 6.0495 ± 17.4021 − 27.8799 ± 33.3700 −
0.7 9.2246e −10 ± 1.4431e −9 ≈ 1.4476e −9 ± 2.2476e −9 ≈ 7.7317e −10 ± 1.6800e −9 ≈ 1.0940e −9 ± 1.8583e −9 ≈ 6.9124 ± 17.7629 −
0.9 7.0819e −10 ± 7.4544e −10 ≈ 8.6857e −10 ± 1.2423e −9 ≈ 8.6832e −10 ± 1.3687e −9 ≈ 1.4373e −9 ± 1.8758e −9 ≈ 1.3033 ± 5.8287 −

50,0 0 0 0.1 2.4878 ± 11.1259 − 42.2141 ± 28.4066 − 62.6582 ± 0.9551 − 64.0278 ± 0.7651 − 64.6633 ± 1.1308 −
0.3 7.3724e −10 ± 9.7763e −10 ≈ 5.6969 ± 17.7139 − 14.1997 ± 24.6097 − 19.8874 ± 26.7939 − 54.9271 ± 20.6629 −
0.5 4.7795e −10 ± 5.8795e −10 ≈ 1.7176e −9 ± 3.1498e −9 ≈ 3.2398e −9 ± 1.2368e −8 ≈ 8.5287 ± 20.8636 − 34.2486 ± 38.3122 −
0.7 2.0098e −9 ± 4.6715e −9 ≈ 6.9608e −10 ± 6.2422e −10 ≈ 3.0832 ± 10.7902 − 1.5723e −9 ± 3.4520e −9 ≈ 4.5651 ± 18.0369 −
0.9 9.7722e −10 ± 1.5721e −9 ≈ 8.5754e −10 ± 8.6167e −10 ≈ 9.6368e −10 ± 1.4701e −9 ≈ 0.1362 ± 0.6091 − 1.5806e −9 ± 2.4191e −9 ≈

Methods 10,0 0 0 20,0 0 0 30,0 0 0 40,0 0 0 50,0 0 0

STA 0.0806 ± 0.2253 3.1866e −4 ± 0.0011 3.0420e −9 ± 4.8701e −9 2.7837e −9 ± 4.8575e −9 9.7776e −10 ± 1.2594e −9

+, − and ≈ denote that the performance of corresponding algorithm is better than, worse than, and similar to that of the STA by the Wilcoxon rank sum test.

± denotes “mean ± standard deviation”.

parison results between the dynamic STA and the basic STA. From

Table 1 , we observe that for most groups of (p rest , p risk) , excluding

(p rest , p risk) = (0 . 1 , 0 . 9) and (p rest , p risk) = (0 . 3 , 0 . 9) , for all the

benchmark functions except the Rosenbrock function, the statisti-

cal performance of the dynamic STA and the basic STA is almost

the same when using the Wilcoxon rank sum test. However, for

the Rosenbrock problem, the results of the dynamic STA with pa-

rameter groups (p rest , p risk) = (0 . 3 , 0 . 1) , (p rest , p risk) = (0 . 5 , 0 . 1) ,

(p rest , p risk) = (0 . 7 , 0 . 1) , (p rest , p risk) = (0 . 9 , 0 . 1) , (p rest , p risk) =

(0 . 5 , 0 . 3) , (p rest , p risk) = (0 . 9 , 0 . 3) , (p rest , p risk) = (0 . 9 , 0 . 5) and

(p rest , p risk) = (0 . 9 , 0 . 7) are better or similar to those obtained

by the basic STA. For a fixed restoration probability p rest = 0 . 9

246 X. Zhou et al. / Neurocomputing 273 (2018) 237–250

Fig. 8. The flowchart of the dynamic STA with refinement.

or a fixed risk probability p risk = 0 . 3 , the iterative curves of the

dynamic STA with the setting parameters are given in Fig. 7 . It can

be seen that either p risk or p rest can influence the dynamic STA’s

performance.

To further investigate the effect of (p rest , p risk) on the Rosen-

brock function, which belongs to the sum-of-squares problem, in-

cluding the sensor network localization problem, we increase the

maximum number of iterations from 100 to 500 times the dimen-

sion and refine the solutions obtained by incorporating a gradient-

based method. As shown in Tables 2 and 3 , the majority of the

aforementioned parameter groups still perform well for the dy-

namic STA. The results after refinement are much closer to the

true global solutions of the Rosenbrock problem, and the larger the

maximum number of iterations, the closer to the true global solu-

tions. After taking stability and reliability into consideration, the

parameter group (p rest , p risk) = (0 . 9 , 0 . 3) is selected as the empiri-

cal best choice.

Remark 4. Through the benchmark function tests, the restoration

probability p rest and the risk probability p risk in the dynamic STA

are determined empirically. The parameter group (p rest , p risk) =

(0 . 9 , 0 . 3) is also considered reasonable because it tells us that

Table 4

Parameters setting for STA and DSTA.

Methods α(β , γ , δ) fc SE (p 1 , p 2) Maxiter

STA 1 → 1 e −8 2 30 – 10 0 0

DSTA 1 → 1 e −8 2 30 (0.9, 0.3) 10 0 0

a risk should be taken at a low probability and that the his-

torical best should be restored at a high probability. In addition,

with a gradient-based technique incorporated for refinement, the

flowchart of the dynamic STA with refinement is illustrated in

Fig. 8 .

5. Application for the sensor network localization

In this section, the proposed dynamic STA with refinement is

applied to solve the SNL problem. Firstly, an illustrative example is

given to show the superiority of dynamic STA. Then, two large SNL

problems are given to verify the effectiveness of the proposed ap-

proach. The network topology of the illustrative example is given

in Fig. 9 , where there are 4 anchors with known positions. We

X. Zhou et al. / Neurocomputing 273 (2018) 237–250 247

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x−axis

y−
ax

is

1

2

3

4

6

5

7

8

Fig. 9. Network topology of the illustrative example.

Table 5

Numerical results for 8 sensors and 4 anchors.

True solutions Solutions by STA Solutions by DSTA Solutions by SFSDP

x ∗1 = (0 . 4688 , 0 . 1210) x̄ 1 = (0 . 4688 , 0 . 1210) x̄ 1 = (0 . 4688 , 0 . 1210) x̄ 1 = (0 . 4687 , 0 . 0 0 05)

x ∗2 = (0 . 5313 , −0 . 1210) x̄ 2 = (0 . 5313 , −0 . 1211) x̄ 2 = (0 . 5312 , −0 . 1211) x̄ 2 = (0 . 5312 , 0 . 0 0 05)

x ∗3 = (0 . 8790 , 0 . 4688) x̄ 3 = (0 . 8790 , 0 . 4687) x ∗3 = (0 . 8790 , 0 . 4688) x ∗3 = (0 . 9907 , 0 . 4687)

x ∗4 = (1 . 1210 , 0 . 5313) x̄ 4 = (1 . 1211 , 0 . 5312) x ∗4 = (1 . 1210 , 0 . 5313) x ∗4 = (0 . 9908 , 0 . 5312)

x ∗5 = (0 . 5313 , 1 . 1210) x̄ 5 = (0 . 5312 , 1 . 1211) x̄ 5 = (0 . 5312 , 1 . 1210) x̄ 5 = (0 . 5312 , 0 . 9908)

x ∗6 = (0 . 4688 , 0 . 8790) x̄ 6 = (0 . 4688 , 0 . 8790) x̄ 6 = (0 . 4688 , 0 . 8790) x̄ 6 = (0 . 4687 , 0 . 9907)

x ∗7 = (−0 . 1210 , 0 . 5313) x̄ 7 = (−0 . 1210 , 0 . 5313) x̄ 7 = (−0 . 1210 , 0 . 5312) x̄ 7 = (0 . 0 0 05 , 0 . 5312)

x ∗8 = (0 . 1210 , 0 . 4688) x̄ 8 = (0 . 1210 , 0 . 4687) x ∗8 = (0 . 1210 , 0 . 4688) x ∗8 = (0 . 0 0 05 , 0 . 4687)

Methods min mean std. dev.

STA 8.1301e −10 2.5723e −9 1.4557e −9
DSTA 4.2838e −18 2.3756e −17 2.3502e −17
SFSDP 0.0171 0.0171 0

Table 6

Numerical results for larger instances.

Instances Methods min mean std. dev.

50 sensors and 4 anchors STA 2.3129e −5 0.0014 0.0041

DSTA 2.3129e −5 2.3129e −5 1.2280e −11
250 sensors and 4 anchors STA 1.8733e −11 1.5232e −8 5.1607e −8

DSTA 1.6482e −11 5.3354e −11 3.2959e −11

need to decide the positions of 8 sensors such that the following

distances between two sensors or between a sensor and an anchor

are satisfied:

a 1 = (0 , 0) , a 2 = (0 , 1) , a 3 = (1 , 0) , a 4 = (1 , 1) ,

d 12 = 1 / 4 , d 34 = 1 / 4 , d 56 = 1 / 4 , d 78 = 1 / 4 ,

e 11 =

√

15

8
, e 13 =

√

19

8
, e 21 =

√

19

8
, e 23 =

√

15

8
,

e 33 =

√

15

8
, e 34 =

√

19

8
, e 43 =

√

19

8
, e 44 =

√

15

8
,

e 52 =

√

19

8
, e 54 =

√

15

8
, e 62 =

√

15

8
, e 64 =

√

19

8
,

e 71 =

√

19

8
, e 72 =

√

15

8
, e 81 =

√

15

8
, e 82 =

√

19

8
.

For the illustrative example, the parameters used for the STA

and dynamic STA (DSTA) are given in Table 4 . The search enforce-

ment SE = 30, the transformation factors are all decreasing expo-

nentially from 1 to 1 e − 8 with the base fc = 2, and the maxi-

mum number of iterations (Maxiter) is 10 0 0. The programs that

implement the STA and DSTA are run for 20 trials independently

in MATLAB R2010b on a PC with Intel(R) Core(TM) i3-2310M CPU

@2.10GHz under Windows 7. The embedded built-in function fmi-

nunc is used as a gradient-based optimization technique for re-

finement. To evaluate the performance of the proposed approach,

we introduce a sparse version of full semi-definite programming

(SFSDP), which is a Matlab package for solving sensor network

localization problems, for performance comparison. Numerical re-

sults are given in Table 5 . We observe that both STA and DSTA can

find the true global solution. In addition, DSTA is better than STA

due to its enhanced exploitation ability, which can be verified by

248 X. Zhou et al. / Neurocomputing 273 (2018) 237–250

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

Results obtained by SFSDP

Sensor(true)
Sensor(estimated)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

Results obtained by STA

Sensor(true)
Sensor(estimated)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

Results obtained by DSTA

Sensor(true)
Sensor(estimated)

0 200 400 600 800 1000
10−20

10−15

10−10

10−5

100

105

Iterations

A
ve

ra
ge

 fu
nc

tio
n

va
lu

es

STA
DSTA

Fig. 10. Performance comparison of three different algorithms for the illustrative example.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Results obtained by DSTA with refinement
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Results obtained by DSTA with refinement

Fig. 11. Best results obtained by dynamic STA with refinement for the SNL problem with 50 and 250 sensors, respectively.

X. Zhou et al. / Neurocomputing 273 (2018) 237–250 249

the statistics (min, mean, etc) and the iterative curves of the aver-

age function values in Fig. 10 . Note that the SFSDP based on gradi-

ents cannot find the true global solution.

Next, two larger sensor network localization problems are in-

vestigated. The first problem contains 50 sensors and 4 anchors.

The second contains 250 sensors and 4 anchors. A radio range of

0.3 is used. The locations of the sensors and the anchors are ran-

domly created by the benchmark generator embedded in the Mat-

lab package. In addition, some noise is added to both problems

with noisy factor 0.001.

The experimental results are given in Table 6 and Fig. 11 . Both

STA and dynamic STA can find the global solutions for the two

problems, with the performance of dynamic STA being much better

due to its more stable results as indicated by the std.dev.

6. Conclusion

By using the least squares method, the SNL problem can be re-

formulated as a non-convex optimization problem. In this paper,

we have proposed a dynamic STA with refinement for the SNL

problem. A dynamic adjustment strategy called risk and restoration

in probability has been incorporated into the basic STA for tran-

scending local optimality and improving its global search ability.

Monte Carlo experiments have been designed to obtain a satisfac-

tory combination of the risk probability and restoration probability.

With the gained parameters setting, the DSTA have been success-

fully applied to some instances of the SNL problem with a problem

size as large as 500. Numerical results have shown that the pro-

posed DSTA has better performance compared with the basic STA

in terms of global search ability and solution quality, which has

verified the effectiveness and efficiency of the proposed approach.

In our future work, to better locate unknown sensors for the SNL

problem in real-world applications, it is advantageous to use other

techniques to determine more anchor sensors in advance. Further-

more, other strategies to accelerate the search process of STA is

preferred.

Acknowledgments

This work was partially supported by the National Nat-

ural Science Foundation of China (Grant No. 61503416 ,

61533020 , 61590921 , 61673399), the Australian Research Council

(DP140102180 , LP140100471) and the 111 Project (B12018, B17048).

References

[1] G. Serpen , L. Liu , Parallel and distributed neurocomputing with wireless sensor

networks, Neurocomputing 173 (2016) 1169–1182 .
[2] H.M. La , W. Sheng , Distributed sensor fusion for scalar field mapping using

mobile sensor networks, IEEE Trans. Cybern. 43 (2) (2013) 766–778 .
[3] W. Yang , H. Shi , Sensor selection schemes for consensus based distributed es-

timation over energy constrained wireless sensor networks, Neurocomputing

87 (2012) 132–137 .
[4] G. Mao , B. Fidan , B. Anderson , Wireless sensor network localization techniques,

Comput. Netw. 51 (10) (2007) 2529–2553 .
[5] X. Wang , S. Wang , D. Bi , Distributed visual-target-surveillance system in wire-

less sensor networks, IEEE Trans. Syst. Man Cybern. Part B Cybern. 39 (5)
(2009) 1134–1146 .

[6] H. Mohamadi , S. Salleh , M.N. Razali , S. Marouf , A new learning automata-based

approach for maximizing network lifetime in wireless sensor networks with
adjustable sensing ranges, Neurocomputing 153 (2015) 11–19 .

[7] Y. Yoon , Y.-H. Kim , An efficient genetic algorithm for maximum coverage
deployment in wireless sensor networks, IEEE Trans. Cybern. 43 (5) (2013)

1473–1483 .
[8] Y. Luo , Z. Wang , G. Wei , F.E. Alsaadi , T. Hayat , State estimation for a class of

artificial neural networks with stochastically corrupted measurements under

round-robin protocol, Neural Netw. 77 (2016) 70–79 .

[9] Y. Luo , Z. Wang , G. Wei , F.E. Alsaadi , H ∞ fuzzy fault detection for uncertain 2-d
systems under round-robin scheduling protocol, IEEE Trans. Syst. Man Cybern.

Syst. 47 (8) (2017) 2172–2184 .
[10] T.-C. Liang , T.-C. Wang , Y. Ye , A gradient search method to round the semidef-

inite programming relaxation solution for ad hoc wireless sensor network lo-
calization, Formal Report, Stanford University 5, 2004 .

[11] J. Aspnes , D. Goldenberg , Y.R. Yang , On the computational complexity of sensor
network localization, in: Proceedings of the Algorithmic Aspects of Wireless

Sensor Networks, Springer, 2004, pp. 32–44 .

[12] P. Biswas , Y. Ye , Semidefinite programming for ad hoc wireless sensor network
localization, in: Proceedings of the Third International Symposium on Informa-

tion Processing in Sensor Networks, ACM, 2004, pp. 46–54 .
[13] A.M.-C. So , Y. Ye , Theory of semidefinite programming for sensor network lo-

calization, Math. Programm. 109 (2–3) (2007) 367–384 .
[14] Z. Wang , S. Zheng , Y. Ye , S. Boyd , Further relaxations of the semidefinite pro-

gramming approach to sensor network localization, SIAM J. Optim. 19 (2)

(2008) 655–673 .
[15] S. Srirangarajan , A.H. Tewfik , Z.-Q. Luo , Distributed sensor network localiza-

tion using SOCP relaxation, IEEE Trans. Wireless Commun. 7 (12) (2008)
4 886–4 895 .

[16] P. Tseng , Second-order cone programming relaxation of sensor network local-
ization, SIAM J. Optim. 18 (1) (2007) 156–185 .

[17] M.W. Carter , H.H. Jin , M.A. Saunders , Y. Ye , Spaseloc: an adaptive subproblem

algorithm for scalable wireless sensor network localization, SIAM J. Optim. 17
(4) (2006) 1102–1128 .

[18] J. Nie , Sum of squares method for sensor network localization, Comput. Optim.
Appl. 43 (2) (2009) 151–179 .

[19] N. Ruan , D.Y. Gao , Global optimal solutions to general sensor network localiza-
tion problem, Perform. Eval. 75 (2014) 1–16 .

[20] C. Wu, C. Li, D.Y. Gao, Canonical primal-dual method for solving non-convex

minimization problems, arXiv: 1212.6492 (2012).
[21] X. Zhou , D.Y. Gao , C. Yang , Canonical primal-dual algorithm for solving

fourth-order polynomial minimization problems, Appl. Math. Comput. 227
(2014) 246–255 .

[22] A. Gopakumar , L. Jacob , Performance of some metaheuristic algorithms for
localization in wireless sensor networks, Int. J. Netw. Manag. 19 (5) (2009)

355–373 .

[23] R.V. Kulkarni , G.K. Venayagamoorthy , Particle swarm optimization in wire-
less-sensor networks: a brief survey, IEEE Trans. Syst. Man Cybern. Part C Appl.

Rev. 41 (2) (2011) 262–267 .
[24] K.-S. Low , H. Nguyen , H. Guo , A particle swarm optimization approach for the

localization of a wireless sensor network, in: Proceedings of the IEEE Interna-
tional Symposium on Industrial Electronics, IEEE, 2008, pp. 1820–1825 .

[25] X. Zhou , C. Yang , W. Gui , State transition algorithm, J. Indust. Manag. Optim. 8

(4) (2012) 1039–1056 .
[26] X. Zhou , D.Y. Gao , C. Yang , A comparative study of state transition algorithm

with harmony search and artificial bee colony, Adv Intell. Syst. Comput. 213
(2013) 651–659 .

[27] X. Zhou , C. Yang , W. Gui , Nonlinear system identification and control using
state transition algorithm, Appl. Math. Comput. 226 (2014) 169–179 .

[28] X. Zhou , C. Yang , W. Gui , A comparative study of sta on large scale global opti-
mization, in: Proceedings of the Twelfth World Congress on Intelligent Control

and Automation (WCICA), IEEE, 2016, pp. 2115–2119 .

[29] X. Zhou , D.Y. Gao , C. Yang , W. Gui , Discrete state transition algorithm for
unconstrained integer optimization problems, Neurocomputing 173 (2016)

864–874 .
[30] F. Zhang , C. Yang , X. Zhou , W. Gui , Fractional-order PID controller tuning using

continuous state transition algorithm, Neural Comput. Appl. (2016) 1–10 .
[31] X. Zhou , D.Y. Gao , A.R. Simpson , Optimal design of water distribution networks

by a discrete state transition algorithm, Eng. Optim. 48 (4) (2016) 603–628 .

[32] J. Han , C. Yang , X. Zhou , W. Gui , A new multi-threshold image segmenta-
tion approach using state transition algorithm, Appl. Math. Modell. 44 (2017)

588–601 .
[33] S. Kirkpatrick , C.D. Gelatt , M.P. Vecchi , Optimization by simmulated annealing,

Science 220 (4598) (1983) 671–680 .
[34] D. Mitra , F. Romeo , A. Sangiovanni-Vincentelli , Convergence and finite-time be-

havior of simulated annealing, in: Proceedings of the Twenty-fourth IEEE Con-

ference on Decision and Control, 24, IEEE, 1985, pp. 761–767 .

Xiaojun Zhou received his Bachelor’s degree in Automa-

tion in 2009 from Central South University, Changsha,
China and received the Ph.D. degree in Applied Mathe-

matics in 2014 from Federation University Australia. He is
currently an Associate Professor at Central South Univer-

sity, Changsha, China. His main interests include model-

ing, optimization and control of complex industrial pro-
cess, optimization theory and algorithms, state transition

algorithm, duality theory and their applications.

250 X. Zhou et al. / Neurocomputing 273 (2018) 237–250

Peng Shi received the B.Sc. degree in mathematics from

the Harbin Institute of Technology, Harbin, China, the
M.E. degree in systems engineering from Harbin Engi-

neering University, Harbin, the Ph.D. degree in electrical

engineering from the University of Newcastle, Callaghan,
NSW, Australia, the Ph.D. degree in mathematics from the

University of South Australia, Adelaide, SA, Australia, the
Doctor of Science degree from the University of Glamor-

gan, Pontypridd, U.K., in 2006, and the Doctor of Engi-
neering degree from the University of Adelaide in 2015.

He was a Professor with the University of Glamorgan, a

Senior Scientist with the Defence Science and Technol-
ogy Organisation, Adelaide, Australia, a Lecturer and Post-

Doctorate with the University of South Australia. He is currently a Professor with
the University of Adelaide, and Victoria University, Melbourne, VIC, Australia. His

current research interests include system and control theory, computational intelli-
gence, and operational research. He has actively served as an Editorial Board Mem-

ber of a number of journals, including Automatica, the IEEE TRANSACTIONS ON AU-

TOMATIC CONTROL, the IEEE TRANSACTIONS ON FUZZY SYSTEMS, the IEEE TRANS-
ACTIONS ON CYBERNETICS, the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I:

REGULAR PAPERS, and the IEEE ACCESS. He was the Chair of Control Aerospace and
Electronic Systems Chapter, IEEE South Australia Section. He is currently a mem-

ber of the College of Expert, Australian Research Council. He is a fellow of the In-
stitution of Engineering and Technology and the Institute of Mathematics and its

Applications.

Cheng-Chew Lim received the B.Sc. (Hons.) and Ph.D. de-

grees in electronic and electrical engineering from Lough-

borough University, Leicestershire, U.K. He is a Professor
of Electrical and Electronic Engineering and the former

Head of the School of Electrical and Electronic Engineer-
ing, University of Adelaide, Adelaide, SA, Australia. His

current research interests include control systems and op-
timization techniques and applications. He is serving as

an Editorial Board Member for the Journal of Industrial

and Management Optimization. He has served as a Guest
Editor of a number of journals, including Discrete and

Continuous Dynamical System—Series B and the Chair of
the IEEE Chapter on Control and Aerospace Electronic Sys-

tems, IEEE South Australia Section.

Chunhua Yang received her M.Eng. in Automatic Control

Engineering and her Ph.D. in Control Science and Engi-
neering from Central South University, China in 1988 and

2002, respectively, and was with the Electrical Engineer-

ing Department, Katholieke Universiteit Leuven, Belgium

from 1999 to 2001. She is currently a full professor in

the School of Information Science & Engineering, Central
South University. Her research interests include modeling

and optimal control of complex industrial process, intelli-
gent control system, and fault-tolerant computing of real-

time systems.

Weihua Gui received the degree of the B.Eng. (Automatic
Control Engineering) and the M.Eng. (Control Science and

Engineering) from Central South University, Changsha,

China in 1976 and 1981, respectively. From 1986 to 1988,
he was a visiting scholar at Universitat-GH-Duisburg Ger-

many. He is a member of the Chinese Academy of En-
gineering and has been a full professor in the School of

Information Science & Engineering, Central South Univer-
sity, Changsha, China, since 1991. His main research in-

terests are in modeling and optimal control of complex

industrial process, distributed robust control, and fault di-
agnoses.

