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a b s t r a c t 

The sensor network localization (SNL) problem aims to reconstruct the positions of all the sensors in a 

network with given distance between pairs of sensors and within the radio range between them. It is 

proved that the computational complexity of the SNL problem is NP-hard, and semi-definite program- 

ming or second-order cone programming relaxation methods can only solve some special problems of 

this kind. In this study, a stochastic intelligent optimization method based on the state transition al- 

gorithm is introduced to solve the SNL problem without additional assumptions and conditions on the 

problem structure. To transcend local optimality, a novel dynamic adjustment strategy called “risk and 

restoration in probability”is incorporated into the state transition algorithm. An empirical study is in- 

vestigated to appropriately choose the risk probability and restoration probability, yielding the dynamic 

state transition algorithm, which is further improved with gradient-based refinement. The refined dy- 

namic state transition algorithm is applied to the SNL problem, and satisfactory simulation results show 

the effectiveness of the proposed approach. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In recent decades, ad hoc wireless sensor networks have re- 

ceived considerable attention due to easy installation and simple 

operation [1–9] . A typical sensor network consists of a large set 

of sensors distributed in a geographical area. Sensor nodes col- 

lect the local information, such as temperature, humidity, and vi- 

bration motion, and communicate with other neighboring nodes, 

which are the nodes if the distance between them is below certain 

radio range. The sensor data collected from these nodes are rele- 

vant only if the node positions are known. Although locating these 

positions can be achieved through manual configuration or by us- 

ing Global Positioning System (GPS) techniques, neither works well 

and both have physical limitations. As a result, techniques to es- 

timate node positions have shifted to develop methods that rely 

only on the distance measures between neighboring nodes. The 

distance information could be based on criteria such as time of 

arrival, time-difference of arrival, or received RF (radio frequency) 

signal strength. We may further assume that we already know the 

exact positions of a few sensor nodes, which we will refer to as 
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anchors, and it should be noted that the determination of anchor 

points is costly in real-world applications. Given the positions of 

the anchor nodes and the relative distance between neighboring 

nodes, the problem of finding the positions of all the unknown 

sensor nodes is called the sensor network localization (SNL) prob- 

lem. The SNL problem is a nonlinear equation problem in its orig- 

inal form, whereas by using the least squares method, the SNL 

problem can be converted into a non-convex optimization problem 

[10] . 

The difficulty of locating the unknown sensors accurately is 

three-fold: (1) the distance measurements may contain some noise 

or uncertainty, (2) it is not easy to identify the sufficient condi- 

tions for the sensor network to be localizable, and (3) the sen- 

sor network localization problem is proved to be NP-hard [11] . The 

NP-hardness has led to effort s being directed at solving this prob- 

lem approximately or solving it completely under certain condi- 

tions. Semi-definite programming (SDP) relaxation has been widely 

used for the SNL problem [10,12–14] , but the solutions obtained 

by SDP relaxation are not generally optimal or are even infeasible. 

It is therefore necessary to round the SDP solution to a subopti- 

mal and feasible one. Since the distance measurements inevitably 

contain noise or uncertainties, methods for rounding the SDP so- 

lution may become not so robust and reliable. Second-order cone 

programming (SOCP) relaxation has also found applications for the 
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SNL problem [15,16] . It is shown that even if it is weaker than 

SDP relaxation, the SOCP relaxation has a simpler structure and 

nicer properties that can make it useful as a problem preproces- 

sor due to its faster speed. It should be noted that both SDP and 

SOCP relaxation in essence are gradient-based methods, and other 

gradient-based methods for the SNL problem can also be found in 

[17–21] . 

To the best of our knowledge, there exist very few stochas- 

tic methods for the SNL problem. While some particle swarm op- 

timization algorithms have been used to solve the SNL problem 

[22–24] , but the sizes of their problems in practice were limited to 

less than 100. The state transition algorithm (STA) has emerged in 

recent years as a novel stochastic intelligent optimization method. 

In the STA, a solution to an optimization problem is regarded as 

a state and a transformation of current solution is regarded as a 

state transition [25] . It uses state space representation, thus it can 

generate candidate solutions in a unified framework, and the ex- 

ecution operators for generating candidate solutions are expressed 

as state transition matrices, which makes it easy to understand and 

flexible to implement. In the continuous STA, there exist four state 

transformation operators: rotation, translation, expansion, and ax- 

esion. These operators have special characteristics that cover the 

local and global search capability. For example, the rotation oper- 

ator can search in a hypersphere within a given radius, thus be- 

longing to a local search, while the expansion operator can explore 

the whole space, thus belonging to a global search. The job special- 

ization is convenient for users when manipulating the STA accord- 

ing to their demands. The strong global search ability and adapt- 

ability of the STA have been demonstrated by comparison with 

other global optimization algorithms and real-world applications 

[25–32] . 

In this paper, we use the STA to find a solution for the SNL 

problem with a size that can exceed 100. The STA is a stochastic 

global optimization algorithm, thus it can find a global solution to 

the SNL problem without additional assumptions and conditions. 

Nevertheless, like most stochastic optimization algorithms, it will 

inevitably get trapped in local minima with a limited amount of 

time. To transcend local optimality, a dynamic adjustment strategy 

called “risk and restoration in probability” is proposed to improve 

the global search ability. Risk in probability means that a relatively 

worse solution is accepted for the next iteration with probability 

p risk , while restoration in probability means that the historical best 

solution is restored with probability p rest . The values of these two 

probability are investigated by an empirical study in this study. 

With the proposed dynamic adjustment strategy, a dynamic STA 

with refinement is presented for the SNL problem. Several simu- 

lation results have demonstrated the effectiveness of the proposed 

approach. 

The main contribution of this paper is three-fold. First, a fast 

rotation transformation operator is designed to reduce the compu- 

tational complexity. Second, a dynamic STA with “risk and restora- 

tion in probability” strategy is proposed to escape from local op- 

timality, and a good combination of the risk probability and the 

restoration probability is obtained by an empirical study. Third, the 

proposed dynamic STA with refinement is successfully applied to 

the sensor network localization problem. 

The rest of this paper is organized as follows. The sensor net- 

work localization problem is formulated in Section 2 . Then, in 

Section 3 , we give a brief review of the basic STA. In Section 4 , 

a fast rotation transformation is proposed, the local convergence 

analysis of the basic STA is discussed and a dynamic adjustment 

strategy is proposed to improve its global search ability. The pro- 

posed dynamic STA with refinement is applied to the sensor net- 

work localization problem in Section 5 , and the concluding re- 

marks are given in Section 6 . 

2. Sensor network localization problem 

Given m anchor points a 1 , . . . , a m 

∈ R 

d ( d is usually 2 or 3, d = 2 

in this study), the Euclidean distance d ij between the i th and j th 

anchor points for ( i , j ) ∈ N x , and the distance d̄ ik between the i th 

sensor and k th anchor points for ( i , k ) ∈ N a , with N x = { (i, j) : ‖ x i −
x j ‖ = d i j ≤ r d } and N a = { (i, k ) : ‖ x i − a k ‖ = d̄ ik ≤ r d } , where, r d is 
the radio range, the sensor network localization (SNL) problem is 

to find n distinct sensor points x i , i = 1 , . . . , n, such that 

‖ x i − x j ‖ 

2 =d 2 i j , ∀ (i, j) ∈ N x , (1a) 

‖ x i − a k ‖ 

2 = d̄ 2 ik , ∀ (i, k ) ∈ N a . (1b) 

Two most commonly used methods to solve the SNL prob- 

lem are SDP relaxation and SOCP relaxation. Let X = [ x 1 , x 2 , . . . , x n ] 

be the unknown matrix to be determined and Y = X T X . Then Eq. 

(1a) can be rewritten as 

e T i j Ye i j = d 2 i j , ∀ (i, j) ∈ N x 

Y = X T X, 

where e i j ∈ R 

n is the sparse vector with nonzero values 1 and −1 
at the i th and the j th positions, respectively. The trick of SDP relax- 

ation method is to relax Y = X T X to Y �X T X and then reformulate 

it to a SDP problem. The similarity applies for the SOCP relaxation 

method. Firstly, Eq. (1a) can be equivalently written as 

min 
∑ 

(i, j) ∈ N x 
| y i j −d 2 i j | 

s . t . y i j = ‖ x i −x j ‖ 

2 , ∀ (i, j) ∈ N x . 

By introducing auxiliary variables t ij , relaxing y i j = ‖ x i −x j ‖ 2 to 
y i j ≥ ‖ x i −x j ‖ 2 yields the following SOCP problem 

min 
∑ 

(i, j) ∈ N x 
t i j 

s . t . y i j ≥ ‖ x i −x j ‖ 

2 , ∀ (i, j) ∈ N x 

t i j ≥ | y i j −d 2 i j | , ∀ (i, j) ∈ N x . 

The aforementioned relaxation methods have an inevitable lim- 

itation, that is, the original problem is equivalent to the relaxation 

problem only if these inequality constraints are active. If they are 

not, there exists an inherent relaxation gap, making the solution of 

the relaxation problem infeasible for the original problem. In other 

words, these relaxation methods only work when a SNL problem 

has certain special structures. To be more practical, a general SNL 

problem is considered to be solved in this study. Since distances 

d ij and d̄ ik may contain noise, making Eqs. (1a) and (1b) infeasible, 

we reformulate the SNL problem using the least squares method 

as the following nonconvex optimization problem 

min 
∑ 

(i, j) ∈ N x 
(‖ x i −x j ‖ 

2 −d 2 i j ) 
2 + 

∑ 

(i,k ) ∈ N a 
(‖ x i −a k ‖ 

2 −d̄ 2 ik ) 
2 . (2) 

Considering that local minima exist in the nonconvex optimiza- 

tion problem, the goal of this study is to find a global solution to 

this problem using a novel stochastic global optimization method 

called STA. To expedite the search process and to improve its global 

search ability, some modifications are added to the basic STA. In 

the following section, a brief review of STA is presented. 

3. A brief review of the basic STA 

In numerical optimization, it usually adopts an iterative method 

to transform the current solution x k to the next one x k +1 via 
designing appropriate operators. For deterministic optimization 

methods, like gradient descent method, the first order differential 
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Fig. 1. Illustration of the rotation transformation ( α = 1 ). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article). 

operator is added to generate the next candidate solution, while 

in Newton’s method, both the first and second order differential 

operators are utilized. For stochastic optimization methods, like 

crossover and mutation operators in genetic algorithm, and posi- 

tion and velocity update operators in particle swarm optimization, 

they all aim to transform current solutions to next candidate so- 

lutions. Similarly, in a state transition way, a solution can be re- 

garded as a state, and the transformation of a solution can be con- 

sidered as a state transition process. On the basis of state space 

representation, the unified form of generating new candidate states 

in STA can be described as follows: {
x k +1 = A k x k + B k u k 

y k +1 = f (x k +1 ) , 
(3) 

where x k = [ x 1 , x 2 , . . . , x n ] 
T ∈ R 

n stands for a state corresponding 

to a solution of the optimization problem, u k is a function of 

x k and historical states, y k is the fitness value at x k , A k and B k 
are state transition matrices, which are usually some transfor- 

mation operators, and f is the objective function or evaluation 

function. 

3.1. State transformation operators 

Using space transformation, the following four special state 

transformation operators are designed to generate new candidate 

solutions. 

(1) Rotation transformation (RT) 

x k +1 = x k + α
1 

n ‖ x k ‖ 2 

R r x k , (4) 

where α is a positive constant, called the rotation factor, R r ∈ 

R 

n ×n , is a random matrix with its entries being uniformly dis- 

tributed random variables defined on the interval [ −1, 1], and ‖ · ‖ 2 
is the 2-norm of a vector. This rotation transformation has the 

function of searching in a hypersphere with a maximal radius α, 
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Fig. 2. Illustration of the translation transformation ( β = 1 ). 

as shown below 

‖ x k +1 − x k ‖ 2 = ‖ α
1 

n ‖ x k ‖ 2 

R r x k ‖ 2 

= 

α

n ‖ x k ‖ 2 

‖ R r x k ‖ 2 

≤ α

n ‖ x k ‖ 2 

‖ R r ‖ m ∞ ‖ x k ‖ 2 ≤ α. 

(5) 

The illustration of the RT in 2-D is given in Fig. 1 , here, the current 

solution x k = [ x 1 , x 2 ] 
T = (2 , 2) , marked in red, and the next candi- 

date solutions x k +1 are marked in blue by performing thousands of 
times of rotation transformation. 

(2) Translation transformation (TT) 

x k +1 = x k + βR t 
x k − x k −1 

‖ x k − x k −1 ‖ 2 

, (6) 

where β is a positive constant, called the translation factor, and 

R t ∈ R is a uniformly distributed random variable defined on the 

interval [0,1]. Fig. 2 shows that the translation transformation has 
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Fig. 3. Illustration of the expansion transformation ( γ = 1 ). 

the function of searching along a line from x k −1 = (1 , 1) to x k = 

(2 , 2) at the starting point x k with maximal length β . 
(3) Expansion transformation (ET) 

x k +1 = x k + γ R e x k , (7) 

where γ is a positive constant, called the expansion factor, and 

R e ∈ R 

n ×n is a random diagonal matrix with its entries obeying the 

Gaussian distribution. Fig. 3 shows that the expansion transforma- 

tion has the function of expanding the entries in x k to the range of 

[ −∞ , + ∞ ], searching in the whole space. Here, x k = (2 , 2) . 

(4) Axesion transformation (AT) 

x k +1 = x k + δR a x k , (8) 

where δ is a positive constant, called the axesion factor, and 

R a ∈ R 

n ×n is a random diagonal matrix with its entries obeying the 

Gaussian distribution and with only one random position having 

nonzero value. As illustrated in Fig. 4 , the axesion transformation 

is aiming to search along the axes. Here, x k = (2 , 2) . 

Remark 1. In the basic STA, from their intrinsic properties, the ro- 

tation transformation is used for exploitation (local search), the ex- 

pansion is used for exploration (global search), the translation is a 

line search that is applied only when a better solution is found, 

and the axesion is for strengthening the single dimensional search. 

3.2. Regular neighborhood and sampling 

For a given solution, a candidate solution is generated by us- 

ing one time of the aforementioned state transformation opera- 

tors. Since the state transition matrix in each state transformation 

is random, the generated candidate solution is not unique. Based 

on the same given point, it is not difficult to imagine that a regu- 

lar neighborhood will be automatically formed when using certain 

state transition operator, as illustrated from Figs. 1 to 4 . In theory, 

the number of candidate solutions in the neighborhood is infinity; 

as a result, it is impractical to enumerate all possible candidate so- 

lutions. 

Since the entries in state transition matrix obey certain stochas- 

tic distribution, for any given solution, the new candidate becomes 

a random vector and its corresponding solution (the value of a ran- 

dom vector) can be regarded as a sample. Considering that any 

two random state transition matrices in each state transformation 

are independent, several times of state transformation (called the 

degree of search enforcement, SE for short) based on the same 

given solution are performed for certain state transition operator, 

consisting of SE samples. It is not difficult to find that all of the 

SE samples are independent, and they are representatives of the 

neighborhood. Taking the rotation transformation for example, a 

total number of SE samples are generated in pseudocode as fol- 

lows: 

1: for i ← 1 , SE do 

2: State (: , i ) ← Best + α 1 
n ‖ Best ‖ 2 R r Best 

3: end for 

where Best is the incumbent best solution, and SE samples are 

stored in the matrix State . 

3.3. An update strategy 

As mentioned above, based on the incumbent best solution, a 

total number of SE candidate solutions are sampled. A new best 

solution is selected from the candidate set by virtue of the evalua- 

tion function, denoted as newBest . Then, an update strategy based 

on greedy criterion is used to update the incumbent best as shown 

below 

Best = 

{
newBest , if f ( newBest ) < f ( Best ) , 

Best , otherwise . 

3.4. Algorithm procedure of the basic STA 

With the state transformation operators, sampling technique 

and update strategy, the basic STA can be described by the follow- 

ing pseudocode 

As for detailed explanations, rotation( · ) in above pseudocode is 
given for illustration purposes as follows 

Remark 2. In the aforementioned pseudocodes, expansion( · ), ro- 
tation( · ) and axesion( · ) are implementations of corresponding 
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Fig. 4. Illustration of the axesion transformation (δ = 1) . 

Algorithm 1 The basic STA. 

1: procedure STA ( funfcn , Best0 , SE , α, β, γ , δ) 
2: Best ← Best0 

3: repeat 

4: if α < αmin then 

5: α ← αmax 

6: end if 

7: Best ← expansion(funfcn,Best,SE, β , γ ) 
8: Best ← rotation(funfcn,Best,SE, α, β) 
9: Best ← axesion(funfcn,Best,SE, β , δ) 
10: α ← 

α
fc 

11: until the specified termination criterion is met 

12: end procedure 

state transformation, sampling technique and update strategy. fun- 

fcn is the name of a function that needs to be optimized. The ro- 

tation factor α decreases periodically from a maximum value αmax 

to a minimum value αmin exponentially with base fc , which is 

called lessening coefficient. op_rotate( · ) and op_translate( · ) repre- 
sent the implementations of proposed sampling technique for ro- 

tation and translation operators, respectively, and fitness( · ) repre- 
sents the implementation of selecting the new best solution from 

SE samples. It should be noted that the translation operator is only 

executed when a solution better than the incumbent best solu- 

tion can be found in the SE samples from rotation, expansion or 

axesion transformation. In the basic STA, the parameter settings 

are given as follows: αmax = 1 , αmin = 1 e − 4 , β = 1 , γ = 1 , δ = 1 , 

SE = 30 , fc = 2 . 

4. Dynamic STA 

Although the basic STA performs well for the majority of the 

benchmark functions as shown in the experimental results of [25] , 

it behaves weakly for the Rosenbrock function. In fact, the Rosen- 

brock function is considered as a hard case for most determin- 

istic and stochastic optimization algorithms, and more specially, 

its structure, known as the fourth-order polynomial, is similar to 

the SNL problem in our study. Furthermore, from the experimen- 

1: function rotation (funfcn,Best,SE, α, β) 
2: oldBest ← Best 

3: fBest ← feval(funfcn,oldBest) 

4: State ← op_rotate(Best,SE, α) 
5: [newBest,fnewBest] ← fitness(funfcn,State) 

6: if fnewBest < fBest then 

7: Best ← newBest 

8: fBest ← fnewBest 

9: State ← op_translate(oldBest,newBest,SE, β) 
10: [newBest,fnewBest] ← fitness(funfcn,State) 

11: if fnewBest < fBest then 

12: fBest ← fnewBest 

13: Best ← newBest 

14: end if 

15: end if 

16: end function 

tal results in [28] , as the iterations increase, the objective value 

of Rosenbrock function still decreases, but at a very slow speed. 

That is to say, the global search ability of STA is not bad but its 

local search for the fourth-order polynomial (the Rosenbrock prob- 

lem and the SNL problem belong to this type) is not so good. As a 

result, in this section, firstly, a fast rotation transformation is pro- 

posed to replace the original one. Then, a convergence analysis of 

STA is discussed based on monotone convergence theorem. Finally, 

we focus on how to jump out from local minima using a dynamic 

adjustment strategy, called “risk and restoration in probability”, in 

other words, the dynamic STA risks accepting a relatively worse so- 

lution with one probability and restores the historical best solution 

with another probability. 

4.1. Fast rotation transformation 

As illustrated in Fig. 1 , the rotation transformation searches a 

hypersphere within a given radius, but a random matrix needs to 

be generated for every rotation transformation. To reduce the com- 

putational complexity, a fast rotation transformation is proposed as 

follows: 
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(5) Fast rotation transformation 

x k +1 = x k + α ˆ R r 
u 

‖ u ‖ 2 

, (9) 

where ˆ R r ∈ R is a uniformly distributed random variable defined 

on the interval [ −1,1] and u ∈ R 

n is a vector with its entries be- 

ing uniformly distributed random variables defined on the interval 

[ −1,1]. It is easy to verify that 

‖ x k +1 − x k ‖ 2 = 

∥∥∥α ˆ R r 
u 

‖ u ‖ 2 

∥∥∥2 
= α‖ ̂

 R r ‖ 2 ≤ α. 

(10) 

The illustration of the fast rotation transformation, where x k = 

(2 , 2) , is given in Fig. 5 . Compared with the original rotation oper- 

ator, the fast rotation transformation has low computational com- 

plexity since the new random variable ˆ R r is a scalar and not a 

matrix R r . The computational time for two rotation operators is 

compared in Fig. 6 , where, at each fixed dimension, we run the 

two rotation operators for 10,0 0 0 times on an Intel(R) Core(TM) 

i3-2310M CPU @2.10GHz under Windows 7. It is clear that the 

fast rotation operator can save a significant amount of computing 

time. 

4.2. Convergence analysis of STA 

In this subsection, we show that the basic STA can at least 

converge to a local minimum. From a control theory perspec- 

tive, the evolution of the incumbent best state x ∗
k 
in STA using 

the greedy criterion can be regarded as a discrete-time switched 

system 

x ∗k +1 = 

{
A k x 

∗
k 
+ B k u k , if f (A k x 

∗
k 
+ B k u k ) < f (x ∗

k 
) , 

x ∗
k 
, otherwise . 

(11) 

A switched system contains some interesting stability phenom- 

ena. For instance, even when all the subsystems are exponentially 

stable, a switched system may have divergent trajectories for cer- 

tain switching signals. That is to say, the stability of a switched 

system depends not only on the dynamics of each subsystem but 

also on the properties of switching signals. 

Theorem 1. The sequences { f (x ∗
k 
) } ∞ 

k =0 generated by the STA can at 
least converge to a local minimum, i.e. , 

lim 

k →∞ 

f (x ∗k ) = f ( ̄x ∗) (12) 

where x̄ ∗ is a local minimum. 

Proof. Since f (x ∗
k +1 ) ≤ f (x ∗

k 
) and f (x ∗

k 
) is bounded below on R 

n , 

i.e. , the global solution can be achieved, the sequence { f (x ∗
k 
) } ∞ 

k =0 
converges according to the monotone convergence theorem . 

Denote x̄ ∗ as the limiting point of the sequence { f (x ∗
k 
) } ∞ 

k =0 . Due 
to the rotation operator and accepting criteria used in the STA, it 

is easy to find that 

f ( ̄x ∗) ≤ f (x ) , ∀ ‖ x − x̄ ∗‖ ≤ αmin (13) 

that is to say, x̄ ∗ is a local minimum when the value of αmin is 

sufficiently small. This completes the proof. �

4.3. Transcending local optimality 

Note that although the sequence { f (x ∗
k 
) } ∞ 

k =0 converges when k 
approaches infinity, it does not mean that the sequence converges 

to the global solution. This phenomenon is called “premature con- 

vergence” in the evolutionary computation community. From a 

practical point of view, “premature convergence” is inevitable since 

there is no prior knowledge to judge whether a solution is in- 

deed the global solution. Thus, how to jump out of local minima 

becomes a significant issue. Risking a relatively bad solution in 

probability is an effective strategy to escape from local minima, 

as indicated in simulated annealing [33] , but it is computation- 

ally expensive to achieve convergence [34] . In this study, a new 

strategy called “risk and restoration in probability” is proposed. 

For each state transformation in the inner loop, a relatively worse 

solution is accepted based on the risk probability. While in the 

outer loop, the best solution, which is stored in external archive, 
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is restored to update the incumbent current solution. The pseu- 

docode for the proposed dynamic STA in the outer loop is given 

below 

Algorithm 2 The dynamic STA. 

1: procedure STA ( funfcn , Best0 , SE , α, β, γ , δ) 
2: repeat 

3: if α(β, γ , δ) < αmin (βmin , γmin , δmin ) then 

4: α(β, γ , δ) ← αmax (βmax , γmax , δmax ) 
5: end if 

6: [Best,fBest] ← expansion(funfcn,Best,SE, β, γ ) 
7: [Best,fBest] ← rotation_fast(funfcn,Best,SE, α, β) 
8: [Best,fBest] ← axesion(funfcn,Best,SE, β, δ) 
9: if fBest < fBest ∗ then 

10: Best ∗ ← Best 

11: fBest ∗ ← fBest 

12: end if 

13: if rand < p rest then � restoration in probability 

14: Best ← Best ∗

15: fBest ← fBest ∗

16: end if 

17: α(β, γ , δ) ← 

α(β,γ ,δ) 
fc 

18: until the maximum number of iterations is met 

19: end procedure 

In the inner loop, taking the expansion function for example, 

the pseudocode is given below 

Remark 3. In the dynamic STA, a fast rotation operator is intro- 

duced. Furthermore, not only α, but also β , γ and δ decrease from 

a maximum value to a minimum value exponentially with base fc , 

which will be helpful for exploitation in the later stage. Best and 

fBest are the incumbent current solution and its function value, 

Best ∗ and fBest ∗ are the best solution and its function value in his- 
tory, respectively, and they are all kept in an external archive. p rest 
and p risk are the restoration probability and the risk probability, 

respectively. Compared with the accepting criteria in simulated an- 

nealing, the “risk and restoration in probability” strategy is easier 

to implement and has better convergence performance since the 

best solution in history is always kept and restored frequently. 

1: function rotation_fast (funfcn,Best,SE, α, β)) 
2: oldBest ← Best 

3: fBest ← feval(funfcn,oldBest) 

4: State ← op_roate_fast(Best,SE, α) 
5: [newBest,fnewBest] ← fitness(funfcn,State) 

6: if fnewBest < fBest then 

7: Best ← newBest 

8: fBest ← fnewBest 

9: State ← op_translate(oldBest,newBest,SE, β) 
10: [newBest,fnewBest] ← fitness(funfcn,State) 

11: if fnewBest < fBest then 

12: fBest ← fnewBest 

13: Best ← newBest 

14: end if 

15: else 

16: if rand < p risk then � risk in probability 

17: Best ← newBest 

18: fBest ← fnewBest 

19: end if 

20: end if 

21: end function 

4.4. Benchmark functions test 

To evaluate the performance of the dynamic STA and to find a 

good combination of the restoration probability and the risk prob- 

ability, some well-known benchmark functions are used for an em- 

pirical study, and they are listed below. 

Spherical function 

f 1 = 

n ∑ 

i =1 
x 2 i , x i ∈ [0 , 100] , 
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Table 1 

Parametric study of the dynamic STA (dimension = 100, iterations = 10,0 0 0). 

Functions p rest p risk 

0.1 0.3 0.5 0.7 0.9 

Spherical 0.1 0 ± 0 ≈ a 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 1.6231e −15 ± 5.1263e −15 −
0.3 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈
0.5 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈
0.7 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈
0.9 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈

Rastrigin 0.1 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 3.3651e −12 ± 6.5316e −12 −
0.3 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 5.6843e −15 ± 2.5421e −14 −
0.5 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈
0.7 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈
0.9 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 1.1369e −14 ± 5.0842e −14 −

Griewank 0.1 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 5.4956e −16 ± 1.3119e −15 −
0.3 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈
0.5 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈
0.7 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈
0.9 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈ 0 ± 0 ≈

Rosenbrock 0.1 34.9246 ± 48.8835 − 80.9344 ± 29.7257 − 83.5215 ± 19.7759 − 87.8305 ± 0.3616 − 88.0899 ± 0.2990 −
0.3 6.7223 ± 16.3449 ≈ 32.5569 ± 45.5968 − 94.9096 ± 43.6650 − 111.6440 ± 56.4694 − 106.1008 ± 49.9611 −
0.5 6.2421 ± 17.6002 ≈ 2.1033 ± 2.6610+ 28.3665 ± 54.6751 − 95.1745 ± 73.8811 − 91.6837 ± 77.8627 −
0.7 6.7115 ± 15.0144 ≈ 16.8595 ± 34.9808 − 16.2994 ± 36.4491 − 24.7477 ± 35.8102 − 20.8548 ± 51.9346 −
0.9 3.1765 ± 3.0737+ 6.0835 ± 18.3434 ≈ 6.2828 ± 18.1138 ≈ 1.7381 ± 2.1587+ 31.9860 ± 61.3152 −

Ackley 0.1 −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ 2.8025e −9 ± 4.4539e −9 −
0.3 −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈
0.5 −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈
0.7 −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈
0.9 −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈ −8.8818e −16 ± 0 ≈

Methods Spherical Rastrigin Griewank Rosenbrock Ackley 

STA 0 ± 0 b 0 ± 0 0 ± 0 6.7952 ± 7.2544 −8.8818e −16 ± 0 

a +, − and ≈ denote that the performance of corresponding algorithm is better than, worse than, and similar to that of the STA by the Wilcoxon rank sum 

test. 
b ± denotes “mean ± standard deviation”. 
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Fig. 7. Iterative curves of the dynamic STA with fixed “risk probability” p rest = 0 . 9 or “restoration probability” p risk = 0 . 3 . 

Rastrigin function 

f 2 = 

n ∑ 

i =1 
(x 2 i − 10 cos (2 πx i ) + 10) , x i ∈ [0 , 5 . 12] , 

Griewank function 

f 3 = 

1 

40 0 0 

n ∑ 

i =1 
x 2 i −

n ∏ 

i 

cos 

∣∣∣∣ x i √ 

i 

∣∣∣∣ + 1 , x i ∈ [0 , 600] , 

Rosenbrock function 

f 4 = 

n ∑ 

i =1 
(100(x i +1 − x 2 i ) 

2 + (x i − 1) 2 ) , x i ∈ [0 , 30] , 

Ackley function 

f 5 = −20 exp 
( 

−0 . 2 
√ 

1 

n 

n ∑ 

i =1 
x 2 
i 

) 

− exp 

( 

1 

n 

n ∑ 

i =1 
cos (2 πx i ) 

) 

+ 20 + e, x i ∈ [0 , 32] . 

To investigate the effect of parameters in the dynamic adjust- 

ment strategy of the STA, we arranged empirical studies in order 

to find a satisfactory combination of p rest and p risk . First, with fixed 

dimension (problem size) and maximum number of iterations, 

some experimental tests are performed on the benchmark func- 

tions with different groups of (p rest , p risk ) . Table 1 shows the com- 
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Table 2 

Performance of the dynamic STA for Rosenbrock function before refinement (dimension = 100). 

Iterations p rest p risk 

0.1 0.3 0.5 0.7 0.9 

10,0 0 0 0.1 34.9246 ± 48.8835 − 80.9344 ± 29.7257 − 83.5215 ± 19.7759 − 87.8305 ± 0.3616 − 88.0899 ± 0.2990 −
0.3 6.7223 ± 16.3449 ≈ 32.5569 ± 45.5968 − 94.9096 ± 43.6650 − 111.6440 ± 56.4694 − 106.1008 ± 49.9611 −
0.5 6.2421 ± 17.6002 ≈ 2.1033 ± 2.6610+ 28.3665 ± 54.6751 − 95.1745 ± 73.8811 − 91.6837 ± 77.8627 −
0.7 6.7115 ± 15.0144 ≈ 16.8595 ± 34.9808 − 16.2994 ± 36.4491 − 24.7477 ± 35.8102 − 20.8548 ± 51.9346 −
0.9 3.1765 ± 3.0737+ 6.0835 ± 18.3434 ≈ 6.2828 ± 18.1138 ≈ 1.7381 ± 2.1587+ 31.9860 ± 61.3152 −

20,0 0 0 0.1 36.6229 ± 41.1742 − 70.7605 ± 30.1326 − 80.3873 ± 18.9506 − 84.8749 ± 0.2333 − 85.4611 ± 0.2593 −
0.3 1.3527 ± 1.6541+ 22.8921 ± 41.2240 − 62.3492 ± 58.6085 − 84.2958 ± 25.5081 − 100.3479 ± 44.1913 −
0.5 6.7016 ± 18.1658 − 1.3524 ± 1.6784+ 21.9584 ± 47.6510 − 48.4355 ± 58.3758 − 69.9912 ± 63.0667 −
0.7 1.8801 ± 2.0266+ 6.4236 ± 19.8274 − 6.8750 ± 21.5073 − 2.2362 ± 1.8067+ 21.3934 ± 42.2174 −
0.9 2.1100 ± 1.5590+ 1.9741 ± 1.9684+ 2.2778 ± 1.8401+ 11.8520 ± 34.9652 − 18.9113 ± 38.2404 −

30,0 0 0 0.1 8.1871 ± 22.3389 − 59.4579 ± 34.4171 − 81.9436 ± 0.8132 − 82.8267 ± 0.2116 − 83.5295 ± 0.2513 −
0.3 2.4303 ± 3.5954 ≈ 30.1052 ± 44.2706 − 59.8675 ± 39.3182 − 83.9215 ± 39.0975 − 84.6498 ± 14.2251 −
0.5 1.0879 ± 1.3156+ 8.7277 ± 20.7838 − 18.0923 ± 41.2037 − 61.8106 ± 70.4271 − 74.3550 ± 64.2713 −
0.7 0.7939 ± 0.8984+ 1.3687 ± 1.1653+ 9.9566 ± 24.4415 − 10.3543 ± 27.5641 − 33.5537 ± 49.5459 −
0.9 1.2680 ± 1.1676+ 1.2800 ± 1.1730+ 1.0241 ± 1.1646+ 0.7466 ± 0.9355+ 1.3722 ± 1.0550+ 

40,0 0 0 0.1 15.5817 ± 27.3889 − 57.2248 ± 33.4997 − 75.8210 ± 17.6466 − 81.0726 ± 0.3210 − 81.9298 ± 0.2200 −
0.3 0.6875 ± 0.8192+ 9.3453 ± 23.8299 − 46.0035 ± 46.7455 − 69.6654 ± 39.9633 − 84.8464 ± 21.9926 −
0.5 1.0538 ± 1.1154+ 13.0401 ± 29.9575 − 11.1267 ± 27.4796 − 17.6139 ± 30.8468 − 46.1817 ± 47.4052 −
0.7 0.9147 ± 0.6730+ 1.3028 ± 0.9836 ≈ 0.5366 ± 0.7615+ 0.7609 ± 0.8081+ 27.7787 ± 46.9281 −
0.9 1.0351 ± 0.8745+ 0.7861 ± 0.7066+ 0.5277 ± 0.8042+ 1.2816 ± 0.7297 ≈ 10.2427 ± 29.4908 −

50,0 0 0 0.1 3.9619 ± 14.1378 − 64.2790 ± 27.5534 − 77.8868 ± 0.3830 − 79.5461 ± 0.2291 − 80.5820 ± 0.2589 −
0.3 0.7379 ± 0.7578+ 15.7587 ± 30.7724 − 26.7952 ± 36.4140 − 42.4749 ± 36.2685 − 79.6220 ± 37.3989 −
0.5 0.5307 ± 0.5997+ 0.5488 ± 0.7058+ 4.4704 ± 16.5813 − 26.8494 ± 42.6035 − 66.1161 ± 56.9610 −
0.7 0.6374 ± 0.5889+ 0.5150 ± 0.5831+ 5.5514 ± 14.3693 − 0.6901 ± 0.9297+ 10.1952 ± 25.8581 −
0.9 0.4749 ± 0.5146+ 0.6032 ± 0.6193+ 0.6189 ± 0.5609+ 1.3870 ± 3.8526 − 1.2649 ± 2.1263 −

Methods 10,0 0 0 20,0 0 0 30,0 0 0 40,0 0 0 50,0 0 0 

STA 6.7952 ± 7.2544 5.7962 ± 2.8367 2.8918 ± 1.9632 1.6408 ± 1.1822 1.0805 ± 0.7956 

+, − and ≈ denote that the performance of corresponding algorithm is better than, worse than, and similar to that of the STA by the Wilcoxon rank sum test 

± denotes “mean ± standard deviation”. 

Table 3 

Performance of the dynamic STA for Rosenbrock function after refinement (dimension = 100). 

Iterations p rest p risk 

0.1 0.3 0.5 0.7 0.9 

10,0 0 0 0.1 21.1587 ± 36.1116 − 53.1184 ± 29.5350 − 63.3643 ± 20.1991 − 70.5142 ± 1.3252 − 70.2448 ± 1.0381 −
0.3 0.0204 ± 0.0912 ≈ 7.5377 ± 22.0972 − 42.4304 ± 38.3322 − 50.5568 ± 42.2048 − 60.5727 ± 31.6022 −
0.5 0.2802 ± 1.2511 − 4.0550e −4 ± 0.0018+ 5.7047 ± 17.5013 − 51.1806 ± 54.7261 − 47.0276 ± 46.6980 −
0.7 5.7870e −4 ± 0.0026+ 2.6333e −6 ± 8.7040e −6+ 9.7799e −4 ± 0.0044+ 10.3570 ± 25.3780 − 10.3748 ± 25.3956 −
0.9 0.0013 ± 0.0057 ≈ 5.7115e −5 ± 2.5542e −4+ 0.0920 ± 0.4115 ≈ 9.3007e −10 ± 1.4912e −9+ 4.2359 ± 16.8367 −

20,0 0 0 0.1 17.6076 ± 31.7114 − 57.2231 ± 24.6991 − 64.7344 ± 15.3070 − 65.4911 ± 13.0773 − 68.9557 ± 1.0903 −
0.3 1.2964e −9 ± 1.7722e −9+ 4.5672e −9 ± 1.5513e −8 − 27.0481 ± 33.2740 − 53.1332 ± 26.1597 − 65.3754 ± 24.7380 −
0.5 3.3265 ± 14.8456 − 9.1372e −9 ± 3.6650e −8+ 5.4289 ± 18.2178 − 25.2178 ± 41.7371 − 28.3450 ± 36.0765 −
0.7 1.7181e −9 ± 2.9007e −9+ 0.2978 ± 1.3318 − 3.9112 ± 17.4915 − 2.3355e −9 ± 2.3355e −9+ 4.3373 ± 19.3952 −
0.9 2.5848e −9 ± 4.0031e −9+ 6.4586e −9 ± 2.4736e −8+ 9.7906e −10 ± 1.4118e −9+ 1.8054 ± 7.5612 − 7.2380e −8 ± 3.2018e −7+ 

30,0 0 0 0.1 5.8828 ± 18.1071 − 45.2268 ± 30.3826 − 66.6607 ± 0.9523 − 66.9913 ± 0.9594 − 67.1216 ± 1.0454 −
0.3 0.1111 ± 0.4969 − 8.9327 ± 21.3730 − 28.6617 ± 36.1546 − 53.0224 ± 27.8523 − 61.5713 ± 18.5342 −
0.5 9.1503e −10 ± 1.4908e −9 ≈ 2.8200 ± 12.6115 − 10.7349 ± 25.6296 − 21.6996 ± 32.4225 − 32.2821 ± 41.0405 −
0.7 4.9650e −10 ± 5.4828e −10 ≈ 1.0867e −9 ± 1.4004e −9 ≈ 0.2918 ± 1.3052 − 3.8141 ± 13.5439 − 7.9870 ± 22.5467 −
0.9 1.6998e −9 ± 2.7782e −9 ≈ 1.4478e −9 ± 2.1626e −9 ≈ 8.5037e −10 ± 1.5985e −9 ≈ 2.4864e −7 ± 1.1101e −6 − 2.2585e −9 ± 6.0799e −9 ≈

40,0 0 0 0.1 10.7407 ± 21.8229 − 40.3449 ± 30.3853 − 61.1384 ± 14.4172 − 65.1246 ± 1.04 4 4 − 65.3149 ± 0.9135 −
0.3 4.7625e −10 ± 5.8946e −10 ≈ 6.6588 ± 18.9926 − 17.8645 ± 27.0329 − 40.9452 ± 29.2316 − 56.2615 ± 19.3012 −
0.5 1.2431e −9 ± 2.7342e −9 ≈ 0.2716 ± 0.8660 − 4.8668 ± 19.8535 − 6.0495 ± 17.4021 − 27.8799 ± 33.3700 −
0.7 9.2246e −10 ± 1.4431e −9 ≈ 1.4476e −9 ± 2.2476e −9 ≈ 7.7317e −10 ± 1.6800e −9 ≈ 1.0940e −9 ± 1.8583e −9 ≈ 6.9124 ± 17.7629 −
0.9 7.0819e −10 ± 7.4544e −10 ≈ 8.6857e −10 ± 1.2423e −9 ≈ 8.6832e −10 ± 1.3687e −9 ≈ 1.4373e −9 ± 1.8758e −9 ≈ 1.3033 ± 5.8287 −

50,0 0 0 0.1 2.4878 ± 11.1259 − 42.2141 ± 28.4066 − 62.6582 ± 0.9551 − 64.0278 ± 0.7651 − 64.6633 ± 1.1308 −
0.3 7.3724e −10 ± 9.7763e −10 ≈ 5.6969 ± 17.7139 − 14.1997 ± 24.6097 − 19.8874 ± 26.7939 − 54.9271 ± 20.6629 −
0.5 4.7795e −10 ± 5.8795e −10 ≈ 1.7176e −9 ± 3.1498e −9 ≈ 3.2398e −9 ± 1.2368e −8 ≈ 8.5287 ± 20.8636 − 34.2486 ± 38.3122 −
0.7 2.0098e −9 ± 4.6715e −9 ≈ 6.9608e −10 ± 6.2422e −10 ≈ 3.0832 ± 10.7902 − 1.5723e −9 ± 3.4520e −9 ≈ 4.5651 ± 18.0369 −
0.9 9.7722e −10 ± 1.5721e −9 ≈ 8.5754e −10 ± 8.6167e −10 ≈ 9.6368e −10 ± 1.4701e −9 ≈ 0.1362 ± 0.6091 − 1.5806e −9 ± 2.4191e −9 ≈

Methods 10,0 0 0 20,0 0 0 30,0 0 0 40,0 0 0 50,0 0 0 

STA 0.0806 ± 0.2253 3.1866e −4 ± 0.0011 3.0420e −9 ± 4.8701e −9 2.7837e −9 ± 4.8575e −9 9.7776e −10 ± 1.2594e −9 

+, − and ≈ denote that the performance of corresponding algorithm is better than, worse than, and similar to that of the STA by the Wilcoxon rank sum test. 

± denotes “mean ± standard deviation”. 

parison results between the dynamic STA and the basic STA. From 

Table 1 , we observe that for most groups of (p rest , p risk ) , excluding 

(p rest , p risk ) = (0 . 1 , 0 . 9) and (p rest , p risk ) = (0 . 3 , 0 . 9) , for all the 

benchmark functions except the Rosenbrock function, the statisti- 

cal performance of the dynamic STA and the basic STA is almost 

the same when using the Wilcoxon rank sum test. However, for 

the Rosenbrock problem, the results of the dynamic STA with pa- 

rameter groups (p rest , p risk ) = (0 . 3 , 0 . 1) , (p rest , p risk ) = (0 . 5 , 0 . 1) , 

(p rest , p risk ) = (0 . 7 , 0 . 1) , (p rest , p risk ) = (0 . 9 , 0 . 1) , (p rest , p risk ) = 

(0 . 5 , 0 . 3) , (p rest , p risk ) = (0 . 9 , 0 . 3) , (p rest , p risk ) = (0 . 9 , 0 . 5) and 

(p rest , p risk ) = (0 . 9 , 0 . 7) are better or similar to those obtained 

by the basic STA. For a fixed restoration probability p rest = 0 . 9 
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Fig. 8. The flowchart of the dynamic STA with refinement. 

or a fixed risk probability p risk = 0 . 3 , the iterative curves of the 

dynamic STA with the setting parameters are given in Fig. 7 . It can 

be seen that either p risk or p rest can influence the dynamic STA’s 

performance. 

To further investigate the effect of (p rest , p risk ) on the Rosen- 

brock function, which belongs to the sum-of-squares problem, in- 

cluding the sensor network localization problem, we increase the 

maximum number of iterations from 100 to 500 times the dimen- 

sion and refine the solutions obtained by incorporating a gradient- 

based method. As shown in Tables 2 and 3 , the majority of the 

aforementioned parameter groups still perform well for the dy- 

namic STA. The results after refinement are much closer to the 

true global solutions of the Rosenbrock problem, and the larger the 

maximum number of iterations, the closer to the true global solu- 

tions. After taking stability and reliability into consideration, the 

parameter group (p rest , p risk ) = (0 . 9 , 0 . 3) is selected as the empiri- 

cal best choice. 

Remark 4. Through the benchmark function tests, the restoration 

probability p rest and the risk probability p risk in the dynamic STA 

are determined empirically. The parameter group (p rest , p risk ) = 

(0 . 9 , 0 . 3) is also considered reasonable because it tells us that 

Table 4 

Parameters setting for STA and DSTA. 

Methods α( β , γ , δ) fc SE ( p 1 , p 2 ) Maxiter 

STA 1 → 1 e −8 2 30 – 10 0 0 

DSTA 1 → 1 e −8 2 30 (0.9, 0.3) 10 0 0 

a risk should be taken at a low probability and that the his- 

torical best should be restored at a high probability. In addition, 

with a gradient-based technique incorporated for refinement, the 

flowchart of the dynamic STA with refinement is illustrated in 

Fig. 8 . 

5. Application for the sensor network localization 

In this section, the proposed dynamic STA with refinement is 

applied to solve the SNL problem. Firstly, an illustrative example is 

given to show the superiority of dynamic STA. Then, two large SNL 

problems are given to verify the effectiveness of the proposed ap- 

proach. The network topology of the illustrative example is given 

in Fig. 9 , where there are 4 anchors with known positions. We 
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Fig. 9. Network topology of the illustrative example. 

Table 5 

Numerical results for 8 sensors and 4 anchors. 

True solutions Solutions by STA Solutions by DSTA Solutions by SFSDP 

x ∗1 = (0 . 4688 , 0 . 1210) x̄ 1 = (0 . 4688 , 0 . 1210) x̄ 1 = (0 . 4688 , 0 . 1210) x̄ 1 = (0 . 4687 , 0 . 0 0 05) 

x ∗2 = (0 . 5313 , −0 . 1210) x̄ 2 = (0 . 5313 , −0 . 1211) x̄ 2 = (0 . 5312 , −0 . 1211) x̄ 2 = (0 . 5312 , 0 . 0 0 05) 

x ∗3 = (0 . 8790 , 0 . 4688) x̄ 3 = (0 . 8790 , 0 . 4687) x ∗3 = (0 . 8790 , 0 . 4688) x ∗3 = (0 . 9907 , 0 . 4687) 

x ∗4 = (1 . 1210 , 0 . 5313) x̄ 4 = (1 . 1211 , 0 . 5312) x ∗4 = (1 . 1210 , 0 . 5313) x ∗4 = (0 . 9908 , 0 . 5312) 

x ∗5 = (0 . 5313 , 1 . 1210) x̄ 5 = (0 . 5312 , 1 . 1211) x̄ 5 = (0 . 5312 , 1 . 1210) x̄ 5 = (0 . 5312 , 0 . 9908) 

x ∗6 = (0 . 4688 , 0 . 8790) x̄ 6 = (0 . 4688 , 0 . 8790) x̄ 6 = (0 . 4688 , 0 . 8790) x̄ 6 = (0 . 4687 , 0 . 9907) 

x ∗7 = (−0 . 1210 , 0 . 5313) x̄ 7 = (−0 . 1210 , 0 . 5313) x̄ 7 = (−0 . 1210 , 0 . 5312) x̄ 7 = (0 . 0 0 05 , 0 . 5312) 

x ∗8 = (0 . 1210 , 0 . 4688) x̄ 8 = (0 . 1210 , 0 . 4687) x ∗8 = (0 . 1210 , 0 . 4688) x ∗8 = (0 . 0 0 05 , 0 . 4687) 

Methods min mean std. dev. 

STA 8.1301e −10 2.5723e −9 1.4557e −9 
DSTA 4.2838e −18 2.3756e −17 2.3502e −17 
SFSDP 0.0171 0.0171 0 

Table 6 

Numerical results for larger instances. 

Instances Methods min mean std. dev. 

50 sensors and 4 anchors STA 2.3129e −5 0.0014 0.0041 

DSTA 2.3129e −5 2.3129e −5 1.2280e −11 
250 sensors and 4 anchors STA 1.8733e −11 1.5232e −8 5.1607e −8 

DSTA 1.6482e −11 5.3354e −11 3.2959e −11 

need to decide the positions of 8 sensors such that the following 

distances between two sensors or between a sensor and an anchor 

are satisfied: 

a 1 = (0 , 0) , a 2 = (0 , 1) , a 3 = (1 , 0) , a 4 = (1 , 1) , 

d 12 = 1 / 4 , d 34 = 1 / 4 , d 56 = 1 / 4 , d 78 = 1 / 4 , 

e 11 = 

√ 

15 

8 
, e 13 = 

√ 

19 

8 
, e 21 = 

√ 

19 

8 
, e 23 = 

√ 

15 

8 
, 

e 33 = 

√ 

15 

8 
, e 34 = 

√ 

19 

8 
, e 43 = 

√ 

19 

8 
, e 44 = 

√ 

15 

8 
, 

e 52 = 

√ 

19 

8 
, e 54 = 

√ 

15 

8 
, e 62 = 

√ 

15 

8 
, e 64 = 

√ 

19 

8 
, 

e 71 = 

√ 

19 

8 
, e 72 = 

√ 

15 

8 
, e 81 = 

√ 

15 

8 
, e 82 = 

√ 

19 

8 
. 

For the illustrative example, the parameters used for the STA 

and dynamic STA (DSTA) are given in Table 4 . The search enforce- 

ment SE = 30, the transformation factors are all decreasing expo- 

nentially from 1 to 1 e − 8 with the base fc = 2, and the maxi- 

mum number of iterations (Maxiter) is 10 0 0. The programs that 

implement the STA and DSTA are run for 20 trials independently 

in MATLAB R2010b on a PC with Intel(R) Core(TM) i3-2310M CPU 

@2.10GHz under Windows 7. The embedded built-in function fmi- 

nunc is used as a gradient-based optimization technique for re- 

finement. To evaluate the performance of the proposed approach, 

we introduce a sparse version of full semi-definite programming 

(SFSDP), which is a Matlab package for solving sensor network 

localization problems, for performance comparison. Numerical re- 

sults are given in Table 5 . We observe that both STA and DSTA can 

find the true global solution. In addition, DSTA is better than STA 

due to its enhanced exploitation ability, which can be verified by 
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Fig. 10. Performance comparison of three different algorithms for the illustrative example. 
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Fig. 11. Best results obtained by dynamic STA with refinement for the SNL problem with 50 and 250 sensors, respectively. 
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the statistics (min, mean, etc) and the iterative curves of the aver- 

age function values in Fig. 10 . Note that the SFSDP based on gradi- 

ents cannot find the true global solution. 

Next, two larger sensor network localization problems are in- 

vestigated. The first problem contains 50 sensors and 4 anchors. 

The second contains 250 sensors and 4 anchors. A radio range of 

0.3 is used. The locations of the sensors and the anchors are ran- 

domly created by the benchmark generator embedded in the Mat- 

lab package. In addition, some noise is added to both problems 

with noisy factor 0.001. 

The experimental results are given in Table 6 and Fig. 11 . Both 

STA and dynamic STA can find the global solutions for the two 

problems, with the performance of dynamic STA being much better 

due to its more stable results as indicated by the std.dev. 

6. Conclusion 

By using the least squares method, the SNL problem can be re- 

formulated as a non-convex optimization problem. In this paper, 

we have proposed a dynamic STA with refinement for the SNL 

problem. A dynamic adjustment strategy called risk and restoration 

in probability has been incorporated into the basic STA for tran- 

scending local optimality and improving its global search ability. 

Monte Carlo experiments have been designed to obtain a satisfac- 

tory combination of the risk probability and restoration probability. 

With the gained parameters setting, the DSTA have been success- 

fully applied to some instances of the SNL problem with a problem 

size as large as 500. Numerical results have shown that the pro- 

posed DSTA has better performance compared with the basic STA 

in terms of global search ability and solution quality, which has 

verified the effectiveness and efficiency of the proposed approach. 

In our future work, to better locate unknown sensors for the SNL 

problem in real-world applications, it is advantageous to use other 

techniques to determine more anchor sensors in advance. Further- 

more, other strategies to accelerate the search process of STA is 

preferred. 
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